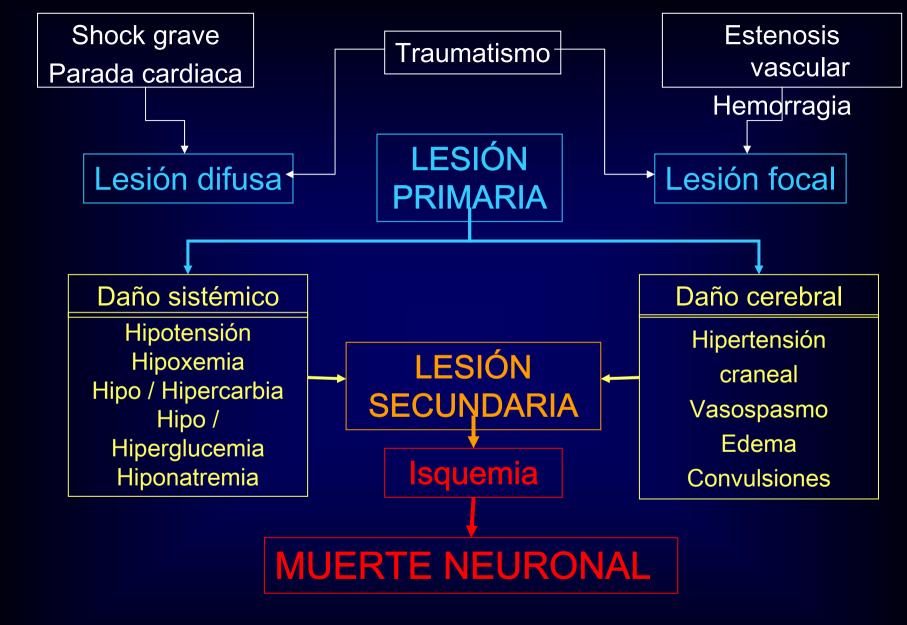
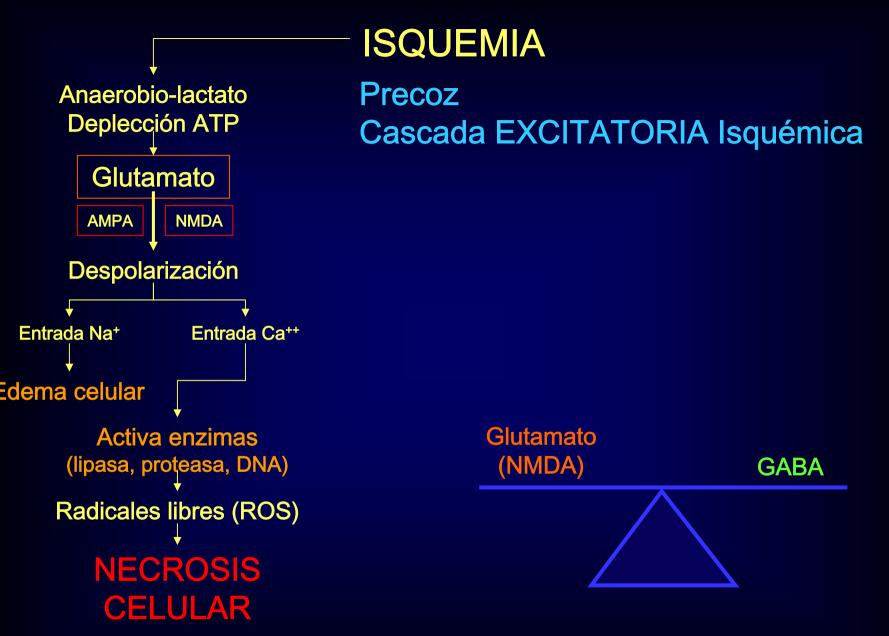

PROTECCIÓN CEREBRAL

Guías farmacológicas para la protección cerebral (adulto)

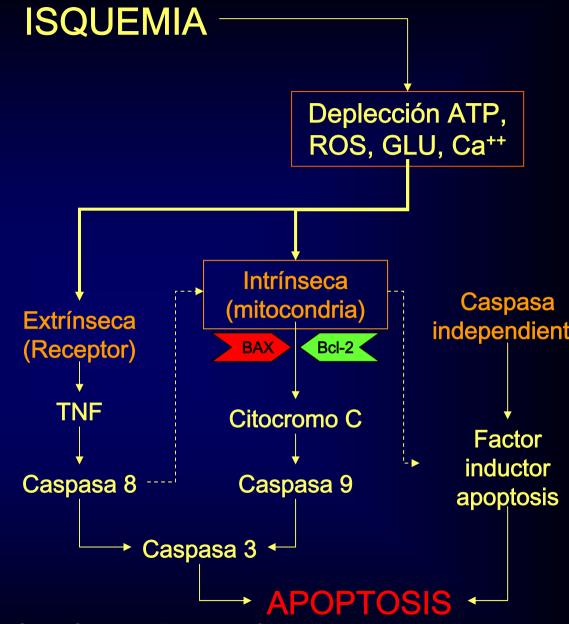
Pablo Rama Maceiras

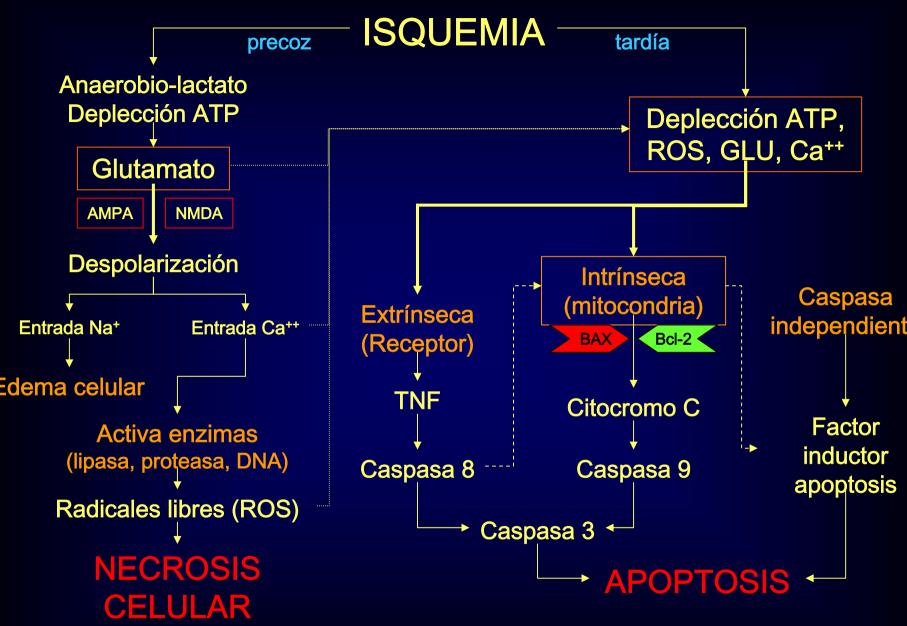
Servicio de Anestesiología y Reanimación


Complejo Hospitalario Universitario Juan Canalejo. A Coruña

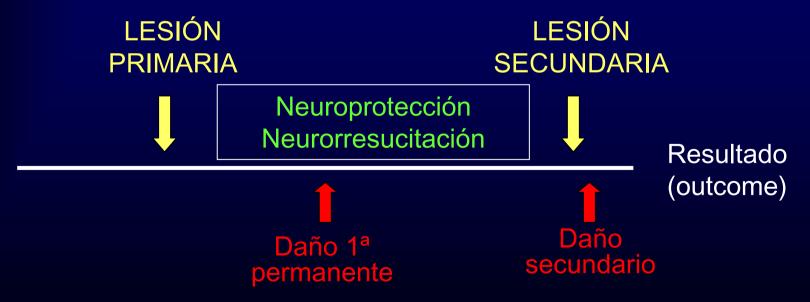

PROTECCIÓN CEREBRAL

Mantener la integridad de la función neuronal Evitar muerte celular 2ª a la isquemia tras lesión neuronal


FISIOPATOLOGÍA MEDIDAS TERAPÉUTICAS


- Actuales
- Perspectivas

Tardía Penumbra Vía genética



Objetivo

"Evitar muerte celular 2ª a la isquemia tras lesión neuronal"

- Lesión primaria inevitable impredecible
- Lesión secundaria condiciona pronóstico
- Repercusión infravalorada: Disfunción cognitiva

Opciones

Modelos in vitro / animales

Protección = Resultados funcionales / histológicos

Ensayos clínicos

Protección = Resultado funcional a largo plazo

- Discordancia
 - Medidas realmente inefectivas
 - Modelos in vitro y animales no adecuados
 - Condiciones de los ensayos clínicos
 - Complejidad de la muerte celular isquemia

Opciones

Clásica:

Reducción metabólica

Actual:

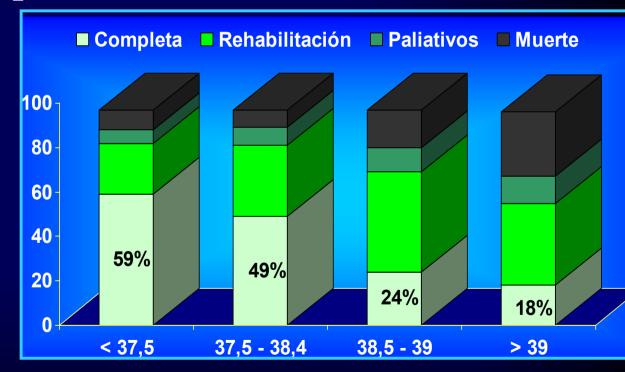
- 1. Control de las variables fisiológicas
- 2. Hipotermia
- 3. Anestésicos
- 4. Corticoides
- 5. Calcio antagonistas Magnesio
- 6. Estatinas
- 7. Otros tratamientos

Opciones

Clásica:

Reducción metabólica

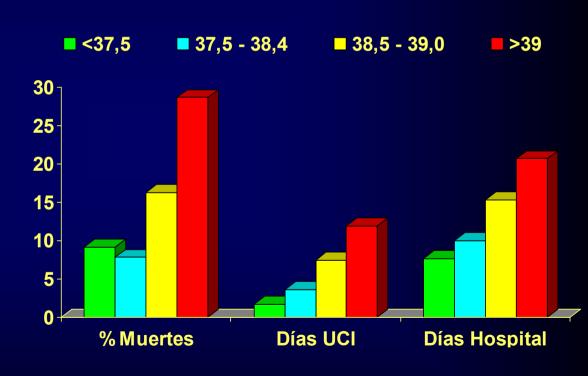
Actual


- Intensidad de la medida
- Momento de aplicación
- Duración de la protección
- Patología / población dirigida
 - Focal
 - Difusa

- Presión arterial
- Oxigenación
- Regulación CO₂
- Fiebre
- Glucemia

- Presión arterial
- Oxigenación
- Regulación CO₂
- Fiebre
- Glucemia

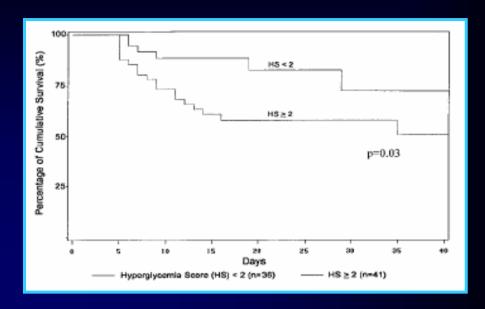
Monitorización cerebral multimodal


- Presión arterial
- Oxigenación
- Regulación CO₂
- Fiebre
- Glucemia

4295 pacientes

Diringer MN. Crit Care Med 2004; 32: 14

- Presión arterial
- Oxigenación
- Regulación CO₂
- Fiebre
- Glucemia



4295 pacientes

Diringer MN. Crit Care Med 2004; 32: 14

Control de las variables sistémicas

- Presión arterial
- Oxigenación
- Regulación CO₂
- Fiebre
- Glucemia

Jeremitsky E. J Trauma 2005; 58: 47 - 50

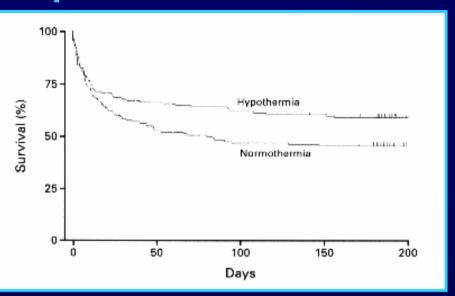
	Clásica (30) (<220mg/dl)	(Intensiva 33) (<110mg/dl)	р
PIC max	19 (15 – 26)	16 (13 – 22)	<0,0001
PIC med	13 (10 – 16)	11 (9 – 14)	0,003

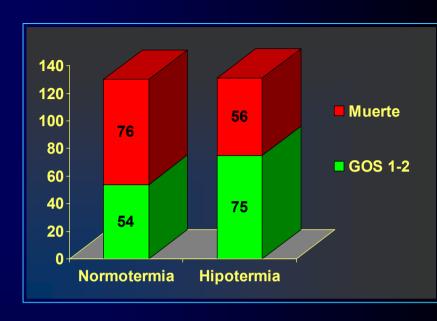
Van Den Berghe G. N Eng J Med 2001; 345: 1359 - 136 Van Den Berghe G. Neurology 2005; 64: 1348 – 1353

¿Glucemia o insulina?

Control de la glucemia

Neuroprotección insulina


- Previene disfunción mitocondria
- Osmolaridad; acidosis láctica; ph neuronal, aac excitarorios


Van den Berghe G. Crit Care Med 2003; 31: 359-66 Vanhorebbek I. Curr Op Crit Care 2005; 11: 304 - 11

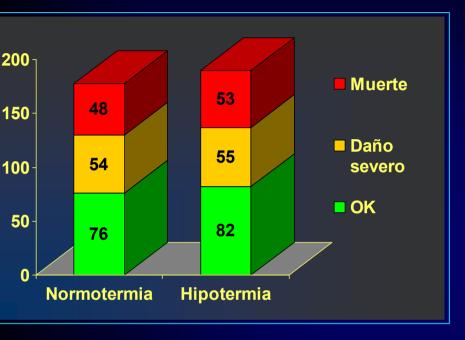
- Presencia insulina cerebral
- Aumenta la expresión del receptor GABA_A

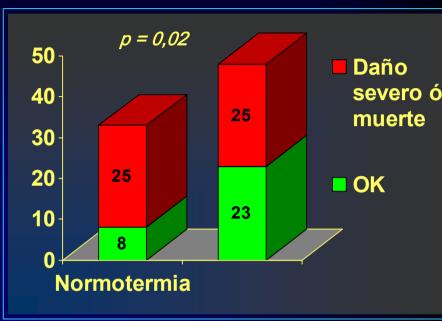
Mielke JG. J Neurochem 2005; 92: 103 - 113

Hipotermia

N Eng J Med 2002; 346: 549 – 556 Bernard SA. N Eng J Med 2002; 346: 557 – 563 Holzer M. Crit Care Med 2005; 33: 414 - 418

Enfriamiento tras parada cardiaca (FV / TV)

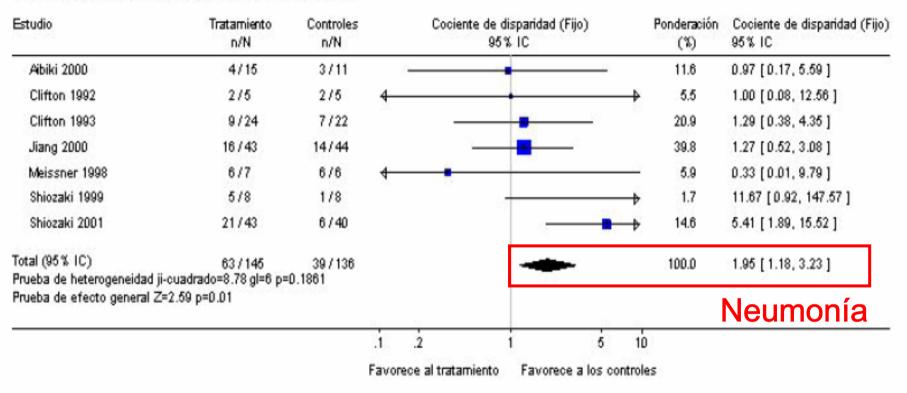

No hipotensión; No hipoxemia


Enfriamiento en 4 / 12 h

Mantenimiento 12 / 24 h

Recalentamiento pasivo

Hipotermia - TCE



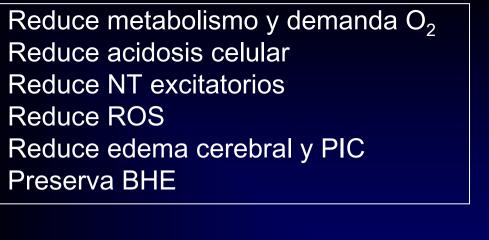
Clifton GL. N Eng J Med 2001; 344: 556 – 563

Pacientes < 45 años y < 35º al ingreso

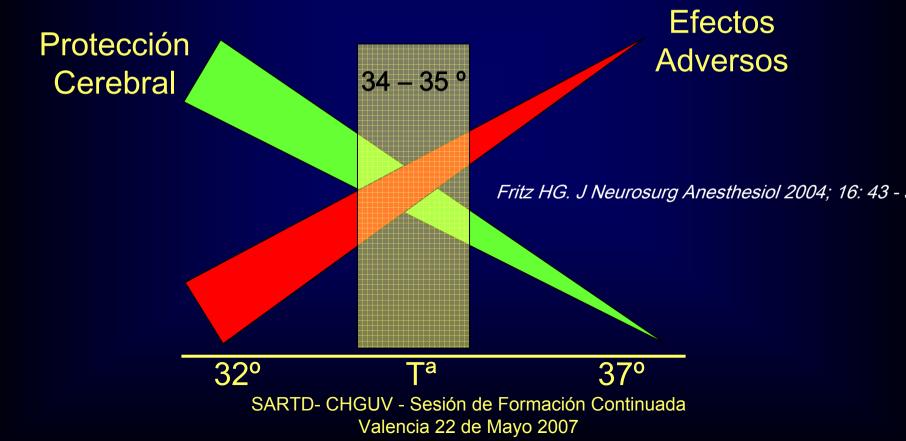
392 pacientes. TCE severo
Enfriamiento a 33 ° en 8 h durante 48 h
Grupo normotermia 37 °
Recalentamiento pasivo < 0,5 °C / h

Alderson P. Cochrane Library 2006 (1)

Duración del tratamiento en función de la respuesta

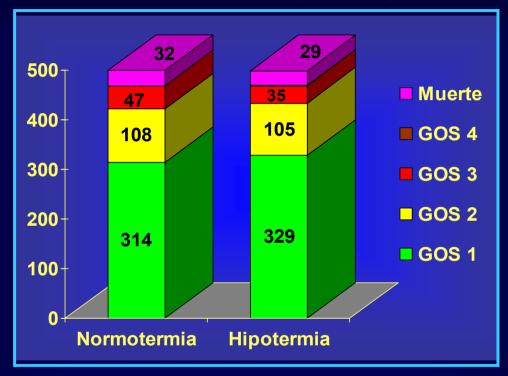

Protocolo tratamiento TCE con control PIC < 20 mmHg

Protocolo tratamiento TCE con control PIC < 20 mmHg


Reducción mortalidad 10 % y aumento GOS 1 del 5 % (doble en GCS 5 – 6

Control de efectos adversos

Polderman KH. Intensive Care Med 2002; 28: 1563 - 1573



Acidosis metabólica Resistencia insulina Hipopotasemia Coagulopatía Pancreatitis Alteración inmune

Hipotermia – Clipaje aneurisma HSA

Bacteriemia 13 vs 25 (p = 0.05)

Todd MM. N Eng J Med 2005; 352: 135 - 145
Hipotermia $32,5-33,5^{\circ}$ vs $36,5-37^{\circ}$ Recalentamiento tras último clipaje
GCS $13-15 \pm \text{ déficit motor (WFNS } 1-3)$

Anestésicos

- Reducción metabólica
- Reducción simpática
- Antagonistas Glutamato NMDA
- Potencian GABA_A

Glutamato (NMDA) GABA

Tiopental (isquemia focal animales)
Redistribuye FSC

Reduce ROS

Propofol (¿Anestésico ideal cerebral?)

Antioxidante

Scavenger radicales libres

PRO

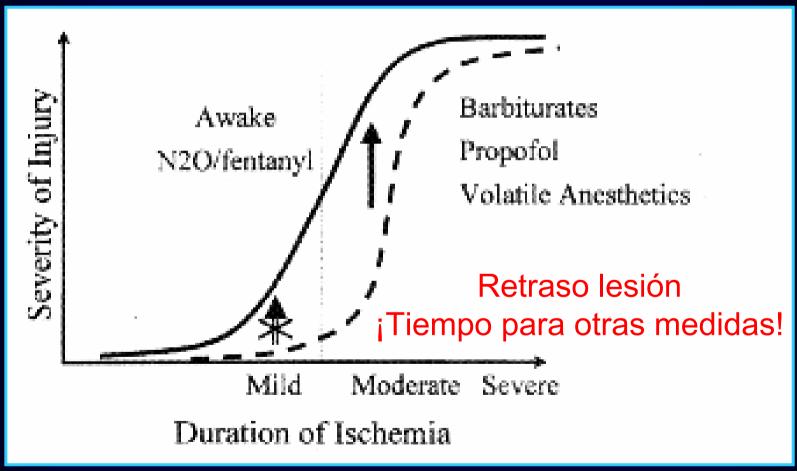
- Base fisiopatológica experimental
- Incidencia isquemia población
- Papel antiapoptótico

Warner DS. J Neurosurg Anesthesiol 2004;16:303

CONTRA

- Solo evidencias experimentales
- Fracaso tiopental en PCR
- Papel potenciador de la apoptosis

Traystman RJ. J Neurosurg Anesthesiol 2004;16:308


Glutamato (NMDA)

GABA

Efectos negativos de anestésicos en el desarrollo neuronal Predominio inhibitorio = APOPTOSIS

Jevtovic-Todorovic V. J Neurosurg Anesthesiol 2005; 17: 204 - 206

Anestésicos

Kawaguchi M. J Anesth 2005; 19: 150 - 156

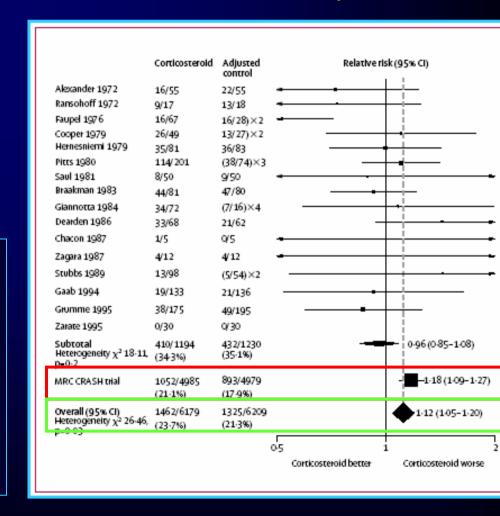
Corticoides

Estabilización membrana
Protege BHE
Reducción inflamación
Efecto edema cerebral

Potencial Beneficioso:

- Edema cerebral tumoral
- Meningitis bacteriana niño y adulto
- Meningitis tuberculosa (no probado HIV)

Alderson P. Cochrane Library 2006; issue 1


Corticoides

TCE

GCS ≤ 14 (10008 pacientes) 8 horas iniciales 2g metilprednisolona en 1 h 0,4 gr/h 48 h

Mortalidad a 14 días y 6 meses

CRASH trial. Lancet 2004; 364: 1321 – 1328 CRASH trial. Lancet 2005; 365: 1957 – 1959

ACV isquémico 453 pacientes

Qizilbash N. Cochrane Library 2003; issue 1

ACV hemorrágico

Feigin VL. Cochrane Library 2006; issue 1

256 HSA

206 Hemorragias intracerebrales

Aumento del riesgo de neuro / miopatía del paciente crítico

54 % vs 18 %

OR 14,90 (IC 3,20 - 69,80) p < 0,001

De Jonghe B. JAMA 2002; 288: 2859 - 2867

Calcio antagonistas y Magnesio

Reduce entrada Ca⁺⁺ celular

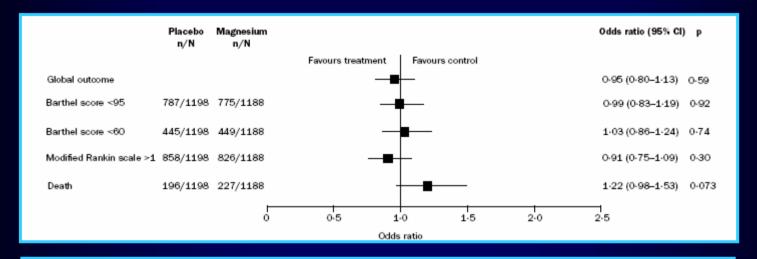
Utilización Ca++ mitocondrial

Reduce Glutamato

Antagonista NMDA

Nimodipino 60 mg/4h vo en HSA 2ª a aneurisma

- Mejora pronóstico neurológico
- Reduce isquemia tardía (clinica y radiológica)


Probable efecto beneficioso en HSA traumática

Rinkel GJE. The Cochrane Library; Septiembre 2004 Langham J. The Cochrane Library; Agosto 2003

Magnesio

IMAGES trial. Lancet 2004; 363: 439 - 445

Primeras 12 h post ACV isquémico Seguimiento a 90 días 1198 pacientes control 1188 Mg 4g en 15 min + 16 g en 24 h

No diferencias mortalidad No diferencias efectos adversos Tampoco efectivo si se administra en 6 1ª h Efecto pronóstico HTA e infartos lacunares

Magnesio - HSA

Ensayo MASH Stroke 2005; 36: 1011 - 1015 (280 pacientes)
Wong GKC. J Neurosurg Anesthesiol 2006; 18: 142 – 148 (60 pacientes)

Mg bolo 16 - 20 mmol + 64 - 80 mmol / 24 h 14 días

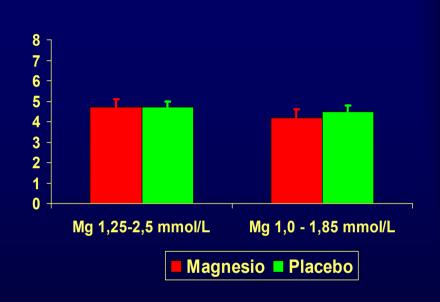
Vasoespasmos, eventos isquémicos a 90 días y escala pronóstica Glasgow

	RR	NNT
Protección pronóstico desfavorable	0,66 (0,38 – 1,14)	14
Rankin = 0 (no síntomas)	3,4 (1,3 – 8,9)	11

¿Diferencias HSA vs ACV isquémico?

Procesos fisiopatológicos diferentes

Dosis y momento administración diferentes


Proyecto estudio fase III ≈ 1000 pacientes

Magnesio en el TCE

30 25 20 p=0,05 Mg 1,25-2,5 mmol/L Mg 1,0 - 1,85 mmol/L Magnesio Placebo

GOS extendido a 6 meses

499 pacientes
TCE moderado – severo
Mg en 8 horas iniciales x 5 días
Bolo 0,425 mmol/k + 0,10 mmol/k/h

Bolo 0,30 mmol/k + 0,05 mmol/k/h

Lancet neurol 2007; 6: 29-38

Estatinas

- (-) activación plaquetaria
- (-) proliferación músculo liso
- (-) apoptosis
- (-) inflamación
- (+) remodelación celular

Mejoría disponibilidad NO

Ensayo fase II 80 pacientes HSA por aneurisma 40 mg pravastatina vs placebo 14 días

Tseng MY. Stroke 2005; 36: 1627 – 1632

	Placebo	Estatina	р
Vasospasmo	25	17	0,000
Vasospasmo severo	12	7	0,044
Días anomalía autorregulación ipsilateral	5,3 (3,9 – 6,8)	3,0 (1,9 – 4,1)	0,01
Días anomalía autorregulación contralateral	3,7 (2,3 – 5,1)	1,6 (0,9 – 2,3)	0,008
Eventos isquémicos tardíos por vasospasmo	12	2	0,00
Mortalidad	8	2	0,037

El futuro de la neuroprotección

Medida	Mecanismo	Lesión	Referencia
EPO	Protección y regeneracióncelular	ACV (fase III) TCE (fase II)	J Neurosurg Anesthesiol 2006; 18: 132 - 138
Ciclosporina A	Mitocondrial	TCE (fase III)	En desarrollo
Dexanabinol	Antagonismo NMDA	TCE (fase III)	Lancet Neurol 2006; 5: 38 - 45
Minociclina Dexametasona	(-) caspasas	TCE (clínico)	En desarrollo
(-) NO sintetasa	Reduce excitotoxicidad	experimental	En desarrollo
Mivazerol	(-) catecolaminas	Focal isquémica	Acta Anaesthesiol Scand 2005; 49: 1117 - 29
Estrógenos Progesterona	Hormonal	Parada cardiaca TCE (fase II)	Crit Care Med 2005; 33: 1595 – 1602
Alcalinización ph	Mejora FSC	Focal isquémica	Neurosurgery 2002; S1: 1256 – 1266
Asociaciones	Inhibición vías isquemia	Focal isquémica	Anesthesiology 2004; 101: 75 – 81

El futuro de la neuroprotección

Medida	Mecanismo	Lesión	Referencia
EPO	Protección y regeneracióncelular	ACV (fase III) TCE (fase II)	J Neurosurg Anesthesiol 2006; 18: 132 - 138
Ciclosporina A	Mitocondrial	TCE (fase III)	En desarrollo
Dexanabinol	Antagonismo NMDA	TCE (fase III)	Lancet Neurol 2006; 5: 38 - 45
Minociclina Dexametasona	(-) caspasas	TCE (clínico)	En desarrollo
(-) NO sintetasa	Reduce excitotoxicidad	experimental	En desarrollo
Mivazerol	(-) catecolaminas	Focal isquémica	Acta Anaesthesiol Scand 2005; 49: 1117 - 29
Estrógenos Progesterona	Hormonal	Parada cardiaca TCE (fase II)	Crit Care Med 2005; 33: 1595 – 1602
Alcalinización ph	Mejora FSC	Focal isquémica	Neurosurgery 2002; S1: 1256 – 1266
Asociaciones	Inhibición vías isquemia	Focal isquémica	Anesthesiology 2004; 101: 75 – 81

Conclusiones (I)

- Reto profesional
- Conocimiento fisiopatológico de la lesión
- Expectativas vs realidades
- No hay recetas mágicas
- Proyectos interesantes

Conclusiones (II)

- Hemodinámica, oxigenación, temperatura, glucemia
 - Monitorización cerebral
- Hipotermia:
 - Lesión difusa (parada cardiaca)
 - Posible grupo seleccionados de TCE
- Anestésicos en lesiones leves moderadas
- Calcioantagonistas (nimodipino):
 - HSA aneurismática
 - Probable en la HSA traumática
- Magnesio posible prevención isquemia post HSA
- Estatinas