

Manejo preoperatorio de la coagulopatía del paciente hepatópata

Pablo Giner Martín (Médico Residente 2º)

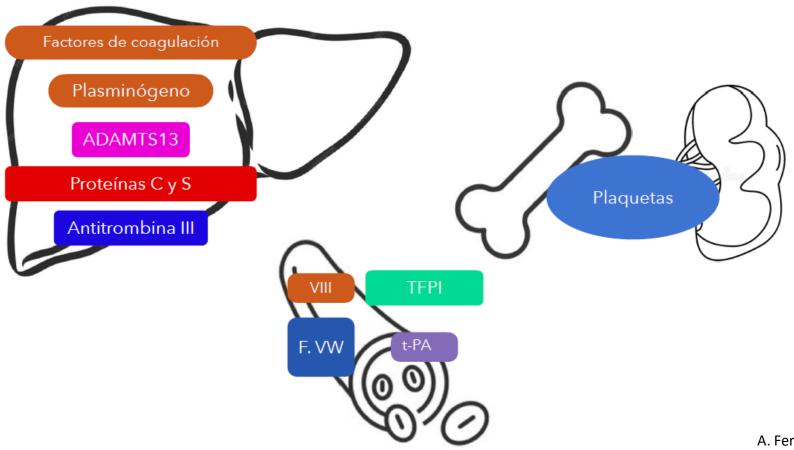
Javier Jesús Pérez Rey (Médico Residente 2º)

Juan Catalá Bauset (Médico Adjunto)

Servicio de Anestesia, Reanimación y Tratamiento del Dolor Consorcio Hospital General Universitario de Valencia

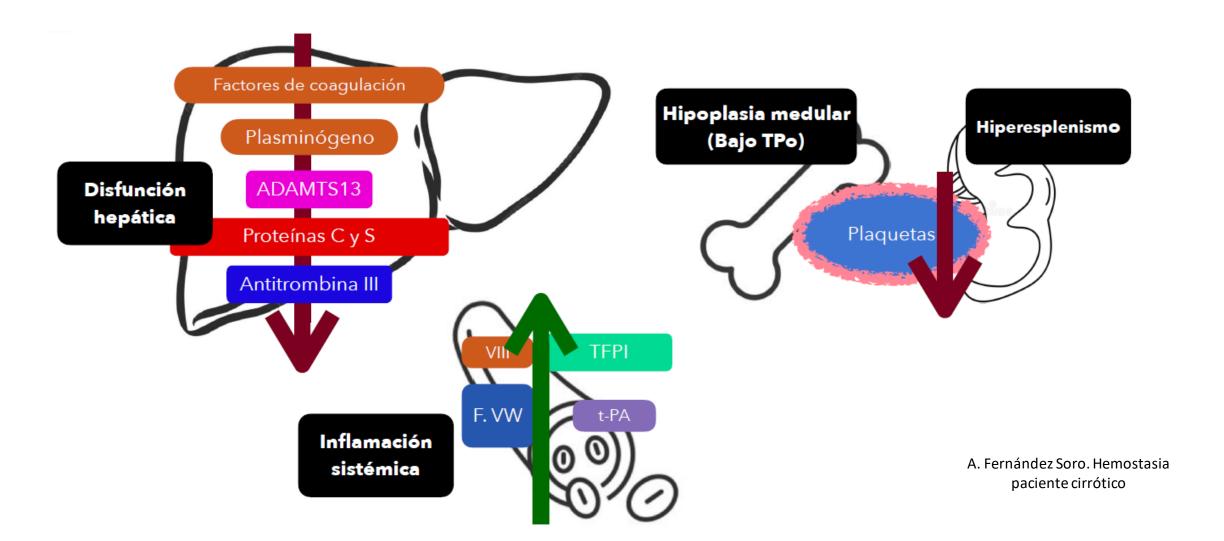
> SARTD – CHGUV sesión de formación continuada 24/25 Valencia, 25 de marzo de 2025

Índice



- 1. Introducción
- 2. Estratificación del riesgo quirúrgico del paciente hepatópata
- 3. Optimizacion preoperatoria
- 4. Criterios transfusionales

Coagulación en equilibrio



A. Fernández Soro. Hemostasia paciente cirrótico

Coagulación re - balanceada

- Disfunción plaquetaria
- Trombocitopenia
- ↓ trombopoyetina
- † óxido nítrico y prostaciclina

Hemostasia primaria

- † del factor de Von Willebrand
- **↓** de ADAMTS 13

- Déficit de vitamina K
- ↓ factores II, V, VII, IX, X y XI
- Disfibrinogenemia

Coagulación

- Aumento del factor VIII
- 🗸 🗸 Proteína C, proteína S
- ↓ Antitrombina, cofactor II de heparina
- Trombofilias hereditarias

- Bajos niveles de α 2-antiplasmina
- Factor XIII y TAFI

Aumento del nivel de t-PA

Fibrinólisis

Bajo nivel de plasminógeno

Coagulación

Antihemostatic drivers Prohemostatic drivers

Equilibrium

Normal hemostasis

Antihemostatic drivers

Thrombocytopenia
Abnormal platelet function
Decreased production of thrombopoietin
Increased production of nitric oxide
and prostacyclin

Primary hemostasis

Low levels of factors II, V, VII, IX, X, and XI Vitamin K deficiency Dysfibrinogenemia

Coagulation

Low levels of α2-antiplasmin, factor XIII, and TAFI Elevated level of t-PA

Fibrinolysis

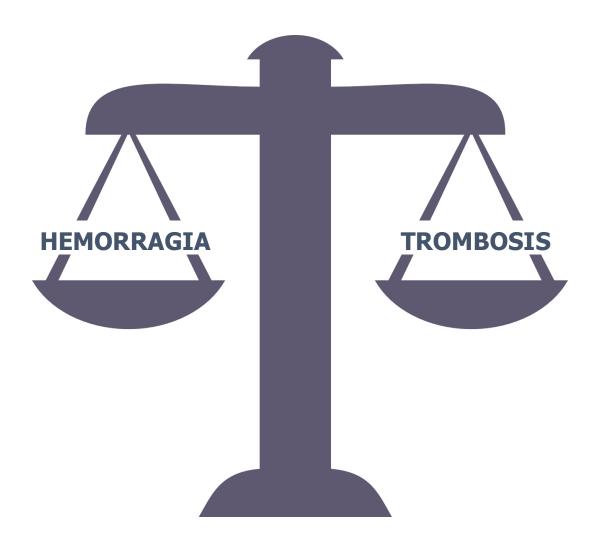
Prohemostatic drivers

Elevated level of von Willebrand factor

Low level of ADAMTS 13

Elevated level of factor VIII

Low levels of protein C, protein S, antithrombin, and heparin cofactor II

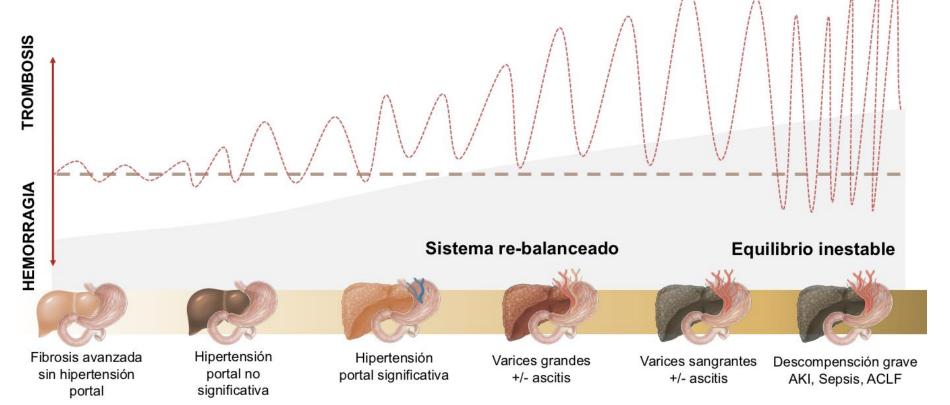

Inherited thrombophilia

Low level of plasminogen

Coagulación

HEMOSTASIA RE – BALANCEADA

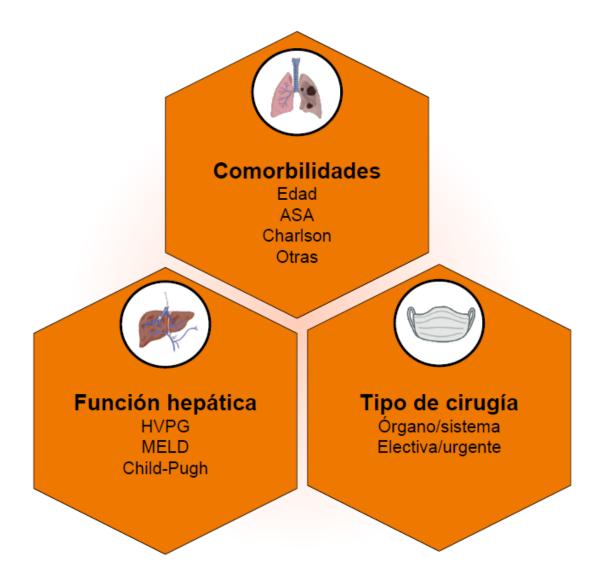
Coagulación



Factores precipitantes

- > Anemia
- Consumo de OH

- > Infección
- > Estimulo quirúrgico


- > Fallo renal
- Depleción de volumen

Estratificación del riesgo

Comorbilidades

Disfunción circulatoria

Ţ

Perfusión periférica

Sd hepatorrenal / cardiohepático

Desnutrición

Vasodilatación esplácnica + shunt portosistémico

Hipoperfusión hepática

Insuficiencia hepática

Encefalopatía

Disfunción inmune

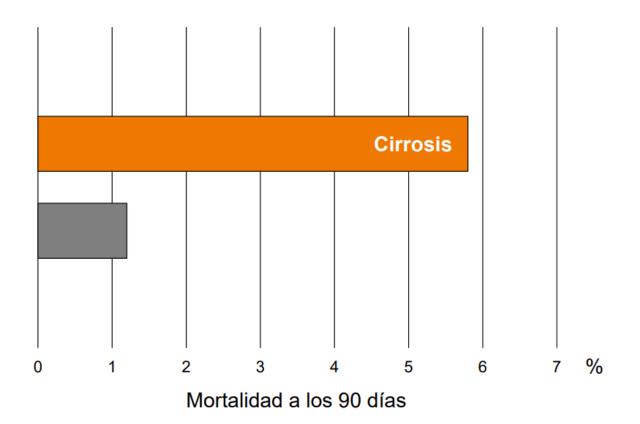
- Herida quirúrgica
- Neumonía
- Sepsis
- PBE

ACFL

Descompensación aguda

Ascitis

Comorbilidades

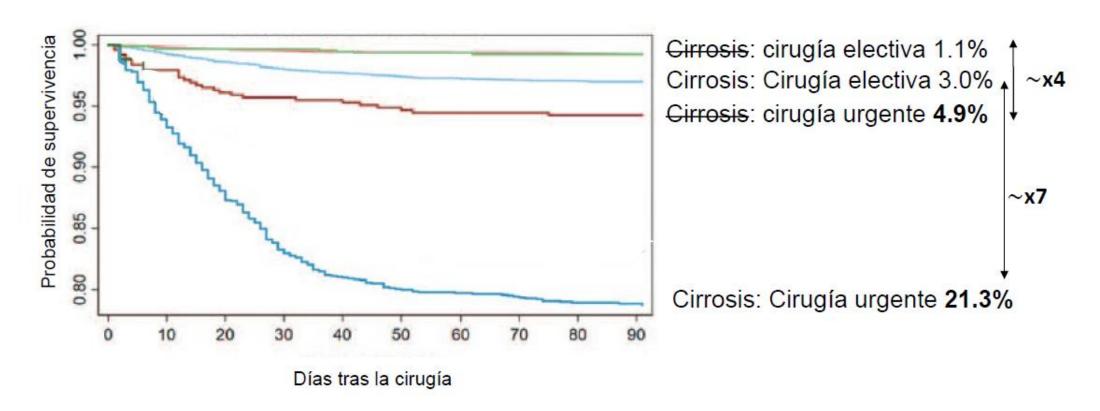

> Cirrosis

- x 2 ETV postoperatoria
- x 3 sangrado mayor postoperatorio
- x 1.5 dehiscencia de sutura
- x 1.2 infección de la herida quirúrgica

> HT portal

- x 4 el riesgo de muerte
- x 3 el riesgo de sangrado intraoperatorio
- x 2 el riesgo de infección de la herida quirúrgica
- x 2 la necesidad de reintervención

"La cirrosis multiplica X2-10 el riesgo de muerte relacionado con una cirugía"


Estratificación del riesgo

Cirugía electiva vs cirugía urgente

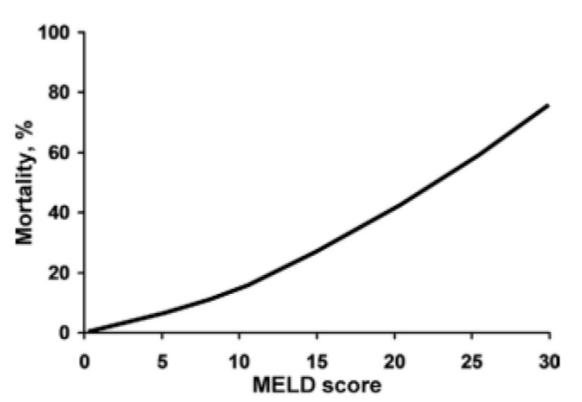
La cirugía urgente multiplica x7 el riesgo de muerte a 90 días

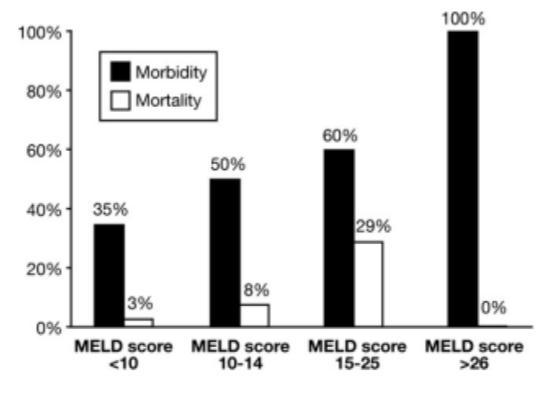
Aumento de complejidad técnica quirúrgica

Modelos basados en función hepática

Modelo predictivo	Componentes	Puntos de corte sugeridos		
Child-Pugh ^{1,2,3}	Encefalopatía, ascitis, albúmina, bilirrubina, INR	A: <5-10% B: 10-40% C: 20-100% → cirugía electiva conrtraindicada		
MELD ^{2,3,4}	Creatinina, bilirrubina, INR	MELD ≥15 (c-index 0,72) <8: 5.7% >20: 50%		
GPVH ⁵	GPVH	Alto riesgo: >16 mmHg Muy alto riesgo (44% mortalidad): >20 mmHg		

L. Tellez. Evaluación del Riesgo Quirúrgico en Cirrosis. 2022


- GPVH >16 mmHg -HR 2.5- (y especialmente ≥20 mmHg –HR 6.7-) se asocian a alta mortalidad
- Variables asociadas a mortalidad a 1 año: GPVH, ASA, cirugías de alto riesgo (no MELD ni Child-Pugh)
- Ningún caso con GPVH <10 mmHg se descompensó


Modelos basados en función hepática

- N= 772
- Periodo: 1980-2004

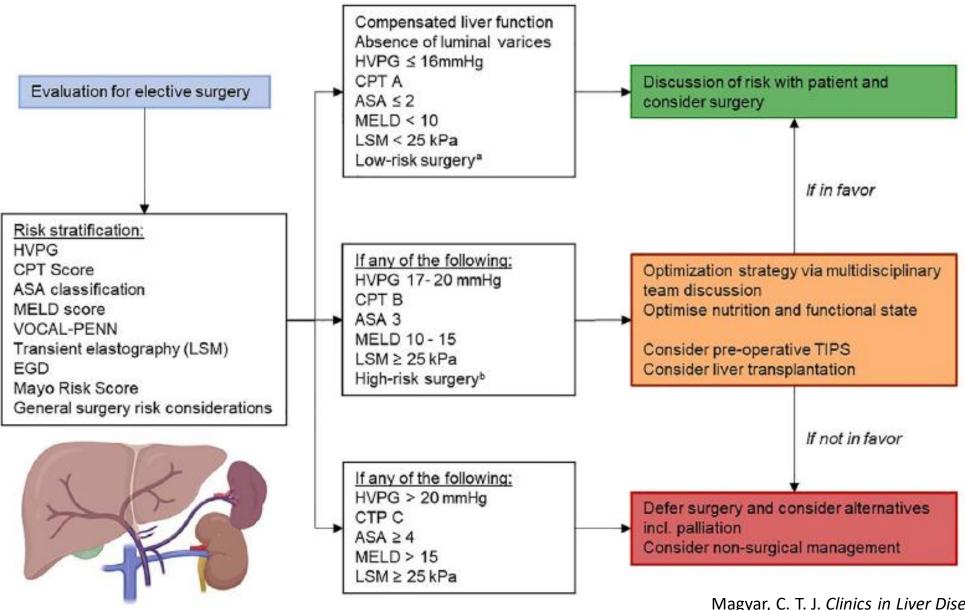
- N= 100 (50% descompensados)
- Periodo: 2002-2008

Estratificación del riesgo

Modelo predictivo	Componentes	Puntos de corte sugeridos/ características
ADOPT-LC score ¹	Edad, Child-Pugh, Charlson, duración de anestesia	3,5 puntos, aunque es difícilmente aplicable (21 ítems incluidos, alguno dependiente de la propia cirugía)
Mayo Postoperative Mortality Risk Calculator ²	ASA, MELD, etiología (alcohólica/ colestásica)	MELD >8 HR 1.12 ASA >4 HR 2.26 Edad HR 1.22
VOCAL-Penn ³	ASA, tipo de cirugía, urgente/electiva, etiología, albúmina, plaquetas, bilirrubina, obesidad	Riesgo individualizado Predice mortalidad y descompensación


Modelos multimodales e integrativos que predicen el riesgo quirúrgico del paciente hepatópata

Estratificación del riesgo



- N= 4,721 cirugías
- Periodo: 2008-2019
- EEUU (128 centros)
- Etiologías:
 - VHC 13%
 - NAFLD 12%
 - VHB 1.5%
 - Alcohol 35%
 - Alcohol + VHC 29,5%
 - Ventajas
- Análisis uni-/ multivariante
- Predice mortalidad
- Predice descompensación
- Fácil de utilizar

er the following data:			SI Units		
Age: years					
Albumin:	g/dL				
Total Bilirubin:	mg/dL				
Platelet Count:	x1,000/µ	L			
BMJ.≥30:	No	No Yes		es	
NAELD:	No		Υє	es	
ASA.Score:	2	3	3 4		
Emergency:	No Yes				
Surgery Type:	Select ▼				
Calculate					

Predicted	Posto	perative Out	comes	:
30-day r	mortality:			
90-day r	mortality:			
180-day r	nortality:			
90-day ded	compens	ation:	Сору	
VOCAL-Penn predicts	es the typ	erative mortality e and circumstance important and readi	of surgery	under

Magyar, C. T. J. Clinics in Liver Disease. 2024

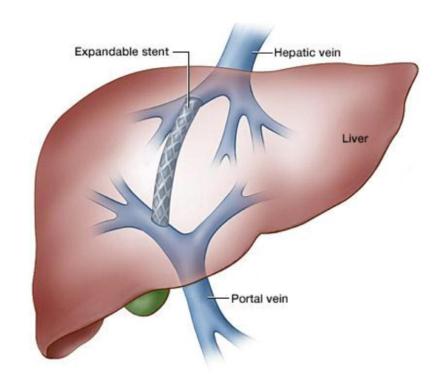
Low – risk surgery: Minimally invasive, abdominal wall, and orthopedic surgery **High – risk surgery:** Cardiovascular, thoracic, neuro and open abdominal surgery

Optimización

¿Qué podemos hacer para optimizar al paciente con hepatopatía?

Consideraciones generales

- > Desnutrición, encefalopatía
- Corrección de anemia, Fe, Vit B12, B1, etc
 - > Retirada de anticoagulantes, antotrombóticos
- Se debe realizar de la misma manera que en pacientes NO hepatópatas
 - Corrección de la función renal
 - Vigilancia de sd hepatorrenal / cardiorrenal / HT pulmonar
- Valorar estudiar función cardiaca (ETT)
 - > Infecciones
- Mantener profilaxis de PBE
- Profilaxis ATB intraoperatoria no difiere de paciente NO hepatópata
 - Optimización de la presión portal
- TIPS preoperatorio??


¿TIPS preoperatorio?

OPTIMIZATION OF PORTAL HYPERTENSION

There has been increasing interest in the role of presurgical placement of a transjugular intrahepatic portosystemic shunt (TIPS) as a bridging procedure in patients with cirrhosis. This shunt would treat the PH and theoretically reduce risk of aforementioned perioperative complications. A recent systematic review and meta-analysis of 3 studies with a total of 259 patients (visceral and nonvisceral surgeries, 2 of 3 studies no reporting if elective or emergency surgery) found no significance impact of preoperative TIPS on 90 day mortality (OR 0.76; 95%CI: 0.33–1.77; I² = 18.2%). Despite low reported I², the range of 90 day mortality between the 3 studies ranges from 7.5%–33%. On the other hand, the same analysis was able to show a reduction of ascites (OR 0.40; 95%CI: 0.22–0.72; I² = 0%). This suggests the potential of TIPS prior to emergency surgery in order to achieve postoperative ascites control, warranting randomized control trials. This is of special interest, as historically uncontrolled ascites was considered a contraindication for surgery.

Evidence supporting the use of beta-blocker, diuretics, preoperative blood products, and the avoidance of nonsteroidal anti-inflammatory drugs are mostly based on expert opinion.²⁵

Piecha, F., Vonderlin. JHEP Reports. 2024

PUEDE ESTAR INDICADO EN CIERTO PERFIL DE PACIENTE CIRRÓTICO

LAS PRUEBAS DE TIEMPOS DE COAGULACIÓN NO PRECIDEN CON RIGUROSIDAD EL R DE SANGRADO

Test	¿Qué valora?	Ventajas	Desventajas	Predictor de sangrado	
Plaquetas	Número de plaquetas circulantes	Correlación con HTP	¿Función? ¿ADAMTS13? ¿F. Von Willerband?	Poco. Se relaciona con la severidad de la enfermedad	
Tiempo de protrombina, Quick, INR	Vía extrínseca y común (factores VII, X, V, II y I)	Monitoriza inhibidores vitamina K Correlación con función hepática	¿Proteína C y S? ¿Antitrombina?	No hay correlación	
ТТРа	Vía intrínseca y común (XII, XI, IX, VIII, X, V, II y I)	Monitoriza heparina	¿Proteína C y S? ¿Antitrombina?	No hay correlación	
Fibrinógeno	Cuantifica total de fibrinógeno		No se valora estabilidad del coágulo (¿fibrinólisis?)	Baja evidencia	

Trasfusiones

REVIEW ARTICLE

Transfusion strategies in patients with cirrhosis

Patricia Liu¹ | Justine Hum² | Janice Jou² | Richard M. Scanlan³ | Joseph Shatzel⁴

Practice Guideline > Hepatology. 2024 Jun 1;79(6):1463-1502.

doi: 10.1097/HEP.0000000000000671. Epub 2023 Nov 9.

AASLD Practice Guidance on Acute-on-chronic liver failure and the management of critically ill patients with cirrhosis

Constantine J Karvellas ¹, Jasmohan S Bajaj ², Patrick S Kamath ³, Lena Napolitano ⁴, Jacqueline G O'Leary ⁵, Elsa Solà ⁶, Ram Subramanian ⁷, Florence Wong ⁸, Sumeet K Asrani ⁹

Affiliations + expand

PMID: 37939273 DOI: 10.1097/HEP.0000000000000671

RECOMMENDATIONS AND GUIDELINES

Periprocedural management of abnormal coagulation parameters and thrombocytopenia in patients with cirrhosis: Guidance from the SSC of the ISTH

Lara N. Roberts¹ | Ton Lisman² | Simon Stanworth^{3,4,5} | Virginia Hernandez-Gea⁶ | Maria Magnusson^{7,8} | Armando Tripodi⁹ | Jecko Thachil¹⁰

Trasfusiones

Procedimientos de bajo riesgo

\longrightarrow

NO REALIZAR NINGUNA MEDIDA EN LA MAYORÍA DE LOS CASOS

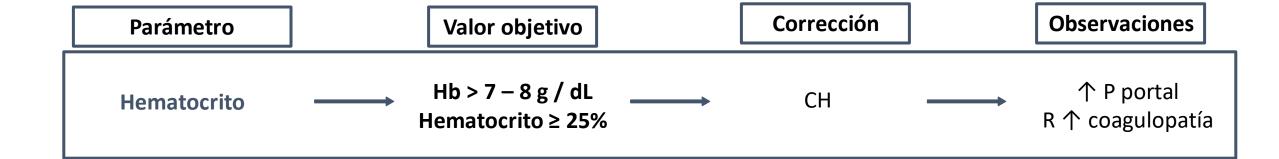
Procedimientos de ALTO riesgo

Parámetros	EASL 2022	ISTH 2021	AASLD 2021	AGA 2021	SIR 2019
ТРуТТРа	No evaluar y corregir	No corregir	No corregir	No evaluar y no corregir	< 2.5
Plaquetas	No corregir de rutina	No corregir	No corregir	No evaluar y no corregir	> 30.000
Fibrinógeno	No corregir de rutina	No corregir de rutina	No corregir de rutina	No recomendaciones	>100
TEG	No evaluar de rutina	No evaluar de rutina	No evaluar de rutina	No recomendaciones	No recomendaciones

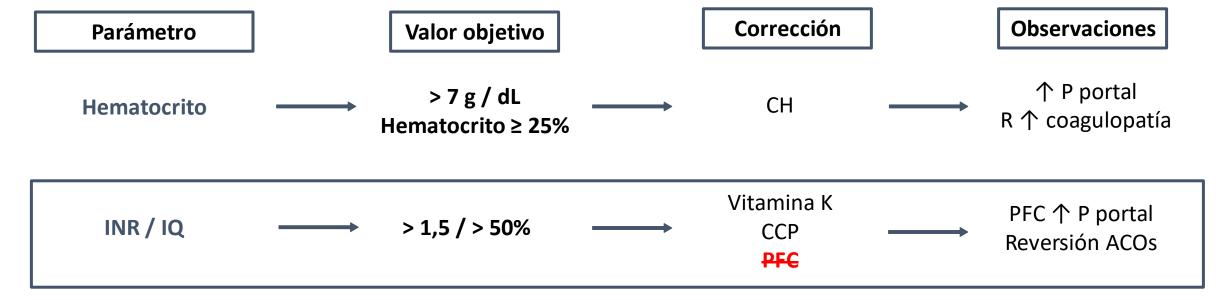
[•] EASL 2022: Valorar caso por caso corrección de plaquetas en procedimientos de alto riesgo y plaquetas < 50.000.

[•] EASL 2022: Niveles de fibrinógeno < 100 mg/dL podrían relacionarse con más tasa de sangrado. Más efectivo en ACLF o descompensación aguda.

[•] EASL 2022: Se podría realizar TEG de rutina para conocer la situación basal del paciente.


Trasfusiones

<u>Several classifications of bleeding risk</u> associated with invasive procedures have been proposed.


High risk procedures like major surgeries, interventional endoscopic procedures (endoscopy with polypectomy > 1 cm, submucosal dissection or mucosal resection, cystogastrostomy, percutaneous gastrostomy, endoscopic retrograde cholangiopancreatography with sphincterotomy, endoscopic ultrasound with fine needle aspiration etc.), solid organ biopsies, etc. have an estimated risk of major bleeding of 1.5% or more. Additionally, they are deemed high risk due to difficult to control bleeding, and significant morbidity and mortality that might arise even from minor bleeding occurring due to these procedures.

<u>Low risk procedures</u> like transjugular liver biopsy are associated with <u>bleeding risk that is</u> <u>easily detectable and controllable</u>, which would include most vascular procedures (with the exclusion of transjugular intrahepatic portosystemic shunt [TIPS]) and local interventions (like dental extractions).

Threshold-based transfusions for hemoglobin in the setting of an acute bleed are the current standard of care as recommended by as AASLD.² A recent randomized controlled trial (RCT) of patients presenting with GI bleed showed that a "restrictive" packed red blood cell (pRBC) transfusion strategy (hemoglobin threshold of 7 g/dL) was associated with a significant decrease in mortality compared to a "liberal" transfusion strategy (hemoglobin threshold of 9 g/dL). A subgroup analysis of this RCT showed that there was also significantly lower early rebleeding and mortality rates in patients with cirrhosis, particularly those with Child-Turcotte-Pugh class A and B.⁸ Thus, current guidelines recommend blood transfusions to

and B.⁸ Thus, current guidelines recommend blood transfusions to a goal of 7-8 g/dL in patients with cirrhosis^{9,10}; however, there are still no guidelines addressing the use of other plasma-based blood products. A compilation of the current guidelines can be found in Table 1. Furthermore, transfusion of blood products may increase portal pressures or alter coagulation parameters in patients with cirrhosis, thus increasing the risk of further bleeding or predispose to rebleeding^{11,12} Lastly, while some provide preoperative pRBC transfusion to certain thresholds, this practice is not well studied or universally practiced.

Reversión SINTROM / NACOs - SANGRADO INTRAOPERATORIO

Dosis: 10 – 30 mg entre 1 y 3 días

Dosis promedio: 20 – 40 UI/Kg

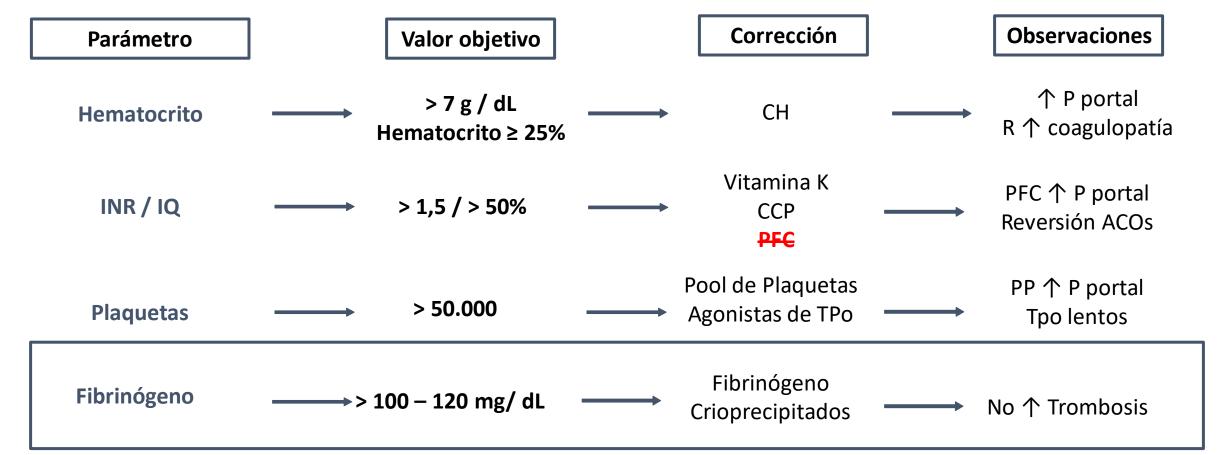
Valor objetivo Corrección **Observaciones Parámetro** 个 P portal >7g/dLCH Hematocrito R ↑ coagulopatía **Hematocrito** ≥ 25% Vitamina K PFC 个 P portal INR / IQ > 1,5 / > 50% **CCP** Reversión ACOs PFC PP 个 P portal Pool de Plaquetas **Plaquetas** > 50.000 Tpo lentos Agonistas de TPo Posología

1 pool de plaquetas $\rightarrow \uparrow$ 10.000 plaquetas

Agonistas del R de la Trombopoyetina

Acción lenta

- Avatrombopag (5 días):
- Plaquetas < 40.000: 60 mg/dia
- Plaquetas 40.000 50.000: 40 mg/día


10 – 13 días después

- Lusutrombopag (7 días):
 - 3 mg/día

9 días después

No \uparrow P portal, ni \uparrow R trombosis

NO REEVALUAR CIFRAS DE PLAQUETAS

other ICU patients. The rate of major bleeding events was increased in patients with cirrhosis and a fibrinogen level below 60 mg/dL.³² In a nationwide United Kingdom study of blood use in cirrhotic patients admitted to the hospital, fibrinogen was found to be an independent predictor of mortality, with a 29% increase in mortality for every 1 g/L (100 mg/dL) reduction in fibrinogen.³⁶ Low fibrinogen levels have been associated with increased risk of bleeding following prophylactic endoscopic variceal band ligation.³⁷ Studies in orthotopic

Posología

Dosis inicial desconocida:

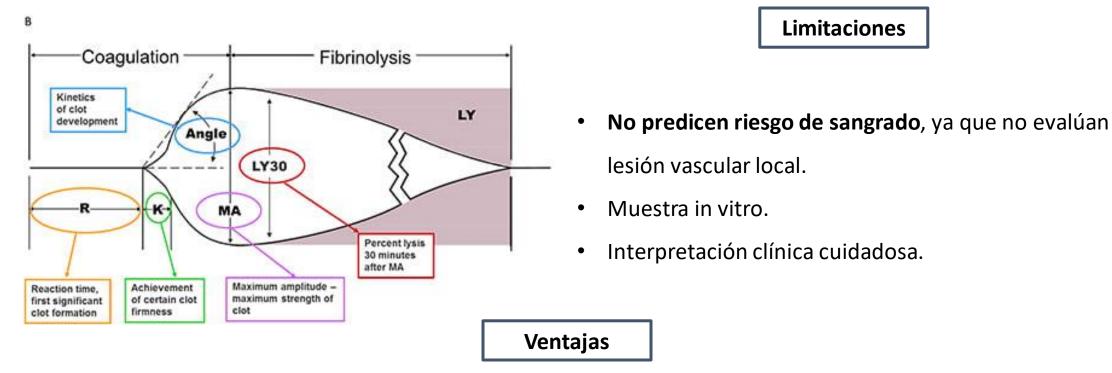
70 mg / Kg / peso

Dosis inicial conocida:

[Nivel objetivo (g/l) – nivel medido (g/l)] /0.017 = (mg/kg)

Valor objetivo Parámetro Corrección **Observaciones** > 7 g / dL ↑ P portal CH Hematocrito **Hematocrito** ≥ 25% R ↑ coagulopatía Vitamina K PFC 个 P portal INR / IQ > 1,5 / > 50% **CCP** Reversión ACOs PFC Pool de Plaquetas PP ↑ P portal > 50.000 **Plaquetas** Agonistas de TPo Tpo lentos Fibrinógeno Fibrinógeno > 100 - 120 No ↑ Trombosis Crioprecipitados

Ácido tranexámico


Considerar en sangrados persistentes o presencia de hiperfibrinólisis en TEG

Desmopresina FVII recombinante

Uso de pruebas viscoelásticas

- Tienen un rol clave en trasplante hepático, hemorragias no varicosas, y procedimientos invasivos.
- Permiten **guiar transfusiones** específicas (plasma, plaquetas, crioprecipitados) y uso de **antifibrinolíticos** como ácido tranexámico.
- Rápidas (menos de 30 minutos) y permiten evaluación dinámica a pie de cama.
- Reducen uso de componentes sanguíneos.

Conclusiones

- 1. LA COAGULOPATÍA DEL PACIENTE CIRRÓTICO NO SIEMPRE INDICA TENDENCIA HEMORRÁGICA:
 HEMOSTASIA RE BALANCEADA
- 2. ESTRATIFICACIÓN DEL RIESGO QUIRÚRGICO CON MODELOS COMBINADOS
- 3. LOS TIEMPOS DE COAGULACIÓN NO PRECIDEN CON RIGUROSIDAD EL R DE SANGRADO
- 4. DISTINGUIR ENTRE PROCEDIMIENTOS DE ALTO Y BAJO RIESGO
- 5. ATENCIÓN A LOS CRITERIOS TRANSFUSIONALES

Bibliografía

- 1. Piecha, F., Vonderlin, J. et al (2024). Preoperative TIPS and in-hospital mortality in patients with cirrhosis undergoing surgery. *JHEP Reports*, 6(1), Article 100914. https://doi.org/10.1016/j.jhepr.2023.100914
- 2. Kataria S, Juneja D, Singh O. Approach to thromboelastography-based transfusion in cirrhosis: An alternative perspective on coagulation disorders. World J Gastroenterol. 2023 Mar 7;29(9):1460-1474. doi: 10.3748/wjg.v29.i9.1460. PMID: 36998429; PMCID: PMC10044856.
- 3. Liu P, Hum J, Jou J, Scanlan RM, Shatzel J. Transfusion strategies in patients with cirrhosis. Eur J Haematol. 2020 Jan;104(1):15-25. doi: 10.1111/ejh.13342. Epub 2019 Nov 19. PMID: 31661175; PMCID: PMC7023893
- 4. Tripodi A, Mannucci PM. The coagulopathy of chronic liver disease. N Engl J Med. 2011 Jul 14;365(2):147-56. doi: 10.1056/NEJMra1011170. PMID: 21751907.
- 5. Magyar, C. T. J., Gaviria, F., Li, Z., Choi, W. J., Ma, A. T., Berzigotti, A., & Sapisochin, G. (2024). Surgical considerations in portal hypertension. *Clinics in Liver Disease*, 28(3), 555–576. https://doi.org/10.1016/j.cld.2024.04.001
- 6. Velarde-Ruiz Velasco, J. A., Crespo, J. et al (2024). Posicionamiento sobre manejo perioperatorio y riesgo quirúrgico en el paciente con cirrosis. *Revista de Gastroenterología de México*, 89(4), 418–441. https://doi.org/10.1016/j.rgmx.2024.05.001
- 7. Espinosa, A., Ripolles Melchor, J., Jain, M., Navarro-Perez, R., Shadad, Y. A., Malvido, E., Abad Gurumeta, A., & Alharbi, R. (2025). Evaluación anestésica y estrategias perioperatorias en los pacientes con hepatopatía y síndrome cardiohepático. *Revista Española de Anestesiología y Reanimación*. Publicación anticipada en línea. https://doi.org/10.1016/j.redar.2025.501735
- 8. I. Aiza-Haddad, L.E. Cisneros-Garza, O. Morales-Gutiérrez et al., Guías del manejo de trastornos de coagulación en pacientes con cirrosis, Revista de Gastroenterología de México, https://doi.org/10.1016/j.rgmx.2023.08.007
- 9. Karvellas, C. J., Bajaj, J. S., Kamath, P. S., Napolitano, L., O'Leary, J. G., Solà, E., Subramanian, R., Wong, F., & Asrani, S. K. (2024). AASLD practice guidance on acute-on-chronic liver failure and the management of critically ill patients with cirrhosis. *Hepatology, 79*(4), 1463–1502. https://doi.org/10.1097/HEP.00000000000000001
- 10. Zanetto, A., Northup, P., Roberts, L., & Senzolo, M. (2023). Haemostasis in cirrhosis: Understanding destabilising factors during acute decompensation. Journal of Hepatology, 78(5), 1037–1047. https://doi.org/10.1016/j.jhep.2023.01.010
- 11. Intagliata, N. M., Davitkov, P., Allen, A. M., Falck-Ytter, Y. T., & Stine, J. G. (2021). AGA technical review on coagulation in cirrhosis. *Gastroenterology*, 161(5), 1630–1656. https://doi.org/10.1053/j.gastro.2021.09.004

