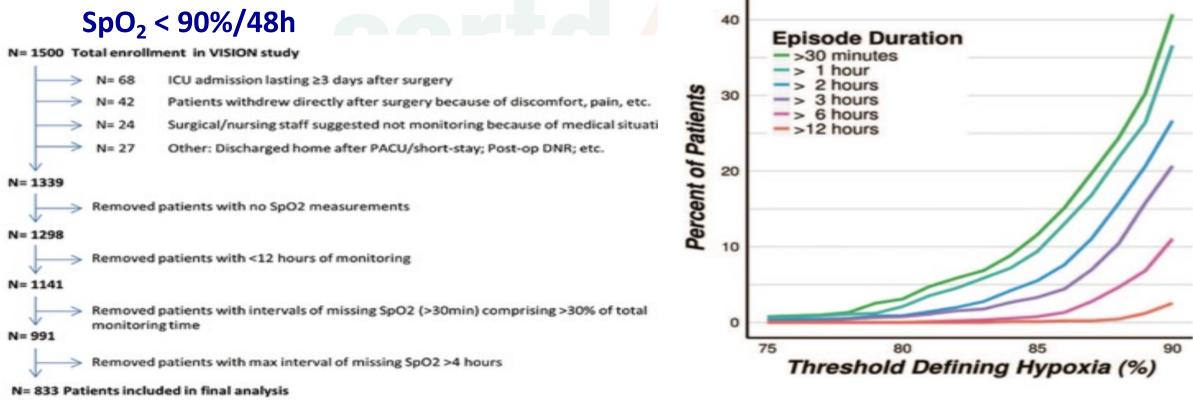


Servicio de Anestesia, Reanimación y Tratamiento del Dolor HOSPITAL GENERAL UNIVERSITARIO VALENCIA

Ventilación mecánica Efectos fisiológicos y resultados clínicos

Prof. F Javier Belda MD, PhD


Professor of Anesthesiology and Critical Care University of Valencia (Spain) fjbelda@uv.es

Section Editor: Sorin J. Brull

Postoperative Hypoxemia Is Common and Persistent: A Prospective Blinded Observational Study

Zhuo Sun, MD,* Daniel I. Sessler, MD,*† Jarrod E. Dalton, PhD,* PJ Devereaux, MD, PhD,†‡ Aram Shahinyan, MD,* Amanda J. Naylor, BA,* Matthew T. Hutcherson, BS,* Patrick S. Finnegan, BA, NREMT-B,* Vikas Tandon, MD,‡ Saeed Darvish-Kazem, MD,‡§ Shaan Chugh, MD,‡ Hussain Alzayer, BSc, MD,‡|| and Andrea Kurz, MD*

Postoperative Hypoxemia: 833 patients from Cleveland Clinic

Anesth Analg 2015;121:709-15

ORIGINAL ARTICLE

Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications

LAS VEGAS - an observational study in 29 countries

Eur J Anaesthesiol 2017; 34:492-507

The LAS VEGAS investigators*

Table 5Patient outcomesN = 9864

Variable	All patients	Low risk of PPCs	Increased risk of PPCs	Relative Risk (95% CI)	P
Postoperative pulmonary complicat	tions				
Total PPCs ^a	10.4 (1004/9697)	7.0 (467/6675)	19.2 (505/2632)	3.16 (2.76 to 3.61)	< 0.001
Unplanned supplemental O2 ^b	8.5 (826/9697)	5.8 (390/6675)	15.5 (408/2632)	2.96 (2.55 to 3.42)	< 0.001
Respiratory failure	1.6 (156/9697)	0.9 (60/6675)	3.4 (90/2632)	3.90 (2.81 to 5.43)	< 0.001
Invasive MV	1.1 (107/9697)	0.6 (41/6675)	2.3 (61/2632)	3.84 (2.58 to 5.72)	< 0.001
ARDS	0.1 (9/9697)	0.0 (1/6675)	0.3 (8/2632)	20.35 (2.54 to 162.76)	< 0.001
Pneumonia	0.4 (40/9697)	0.1 (10/6675)	1.1 (28/2632)	7.17 (3.48 to 14.77)	< 0.001
Pneumothorax	0.1 (13/9697)	0.1 (8/6675)	0.2 (4/2632)	1.27 (0.38 to 4.23)	0.697
Postoperative outcome					
Length of hospital stay	1.0 [0.0 to 4.0]	1.0 [0.0 to 3.0]	4.0 [1.0 to 7.0]	-	< 0.001
In-hospital mortality	0.6 (56/8973)	0.2 (13/6163)	1.7 (41/2445)	8.07 (4.32 to 15.08)	< 0.001
Hospital-free days ^c	26.0 [23.0 to 27.0]	26.0 [24.0 to 27.0]	23.0 [21.0 to 26.0]	and the server produces by	< 0.001

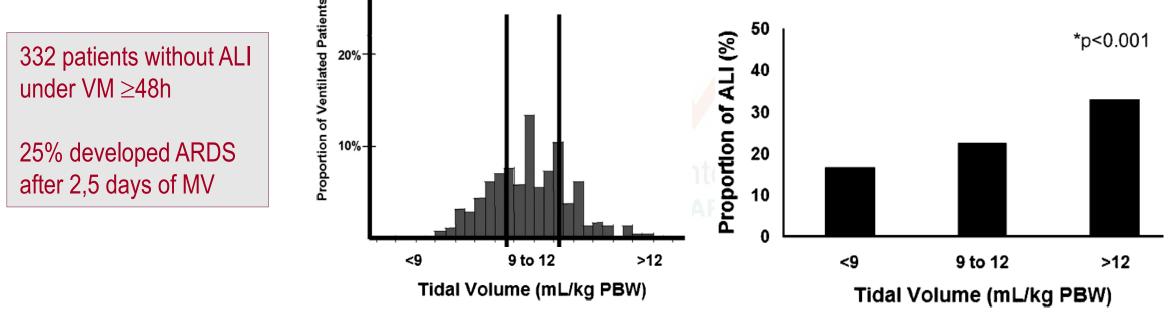
Futier et al. IMPROVE NEJM 2014: 35% ProveNet. PROVHILO Lancet 2015: 40% Ferrando et al. iPROVE Lancet respir Med 2018: 40%

First question: How do you ventilate your patients in OR and ICU?

- A. PROTECTIVE MECHANICAL VENTILATION
- B. NON PROTECTIVE MECHANICAL VENTILATION
- C. NONE OF THE ABOVE

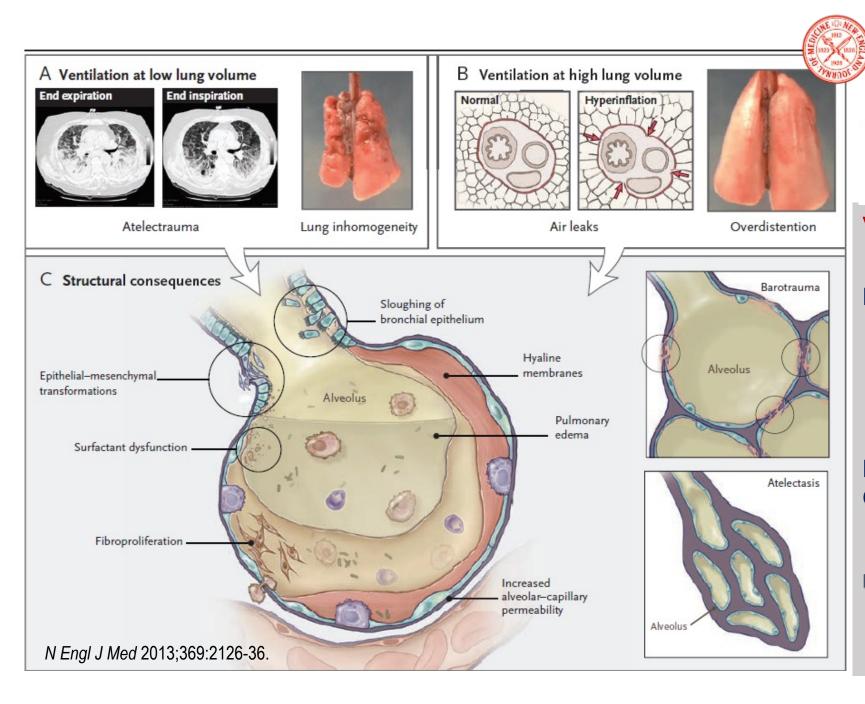
What means PMV for you? A. Stay inside the OR B. To apply the protocol C. Prevent Lung Injury

> Avoid overdistention: Low VT Prevent colapse and closing-reopening: PEEP


Feature Articles :

Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation*

Ognjen Gajic, MD; Saqib I. Dara, MD; Jose L. Mendez, MD; Adebola O. Adesanya, MD; Emir Festic, MD; Sean M. Caples, MD; Rimki Rana, MD; Jennifer L. St. Sauver, PhD; James F. Lymp, PhD; Bekele Afessa, MD; Rolf D. Hubmayr, MD



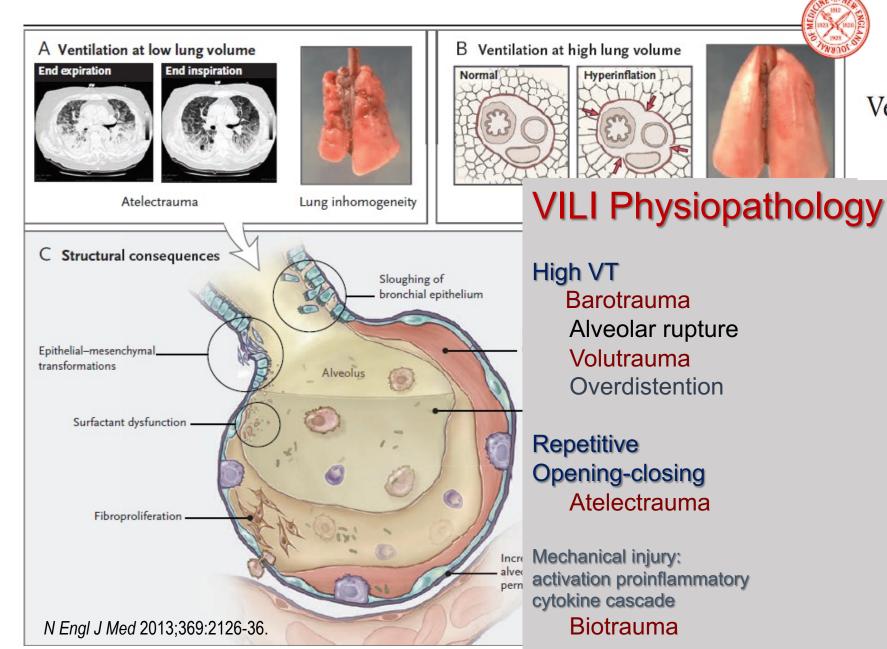
Crit Care Med 2004;32:1817-1824

Factors associated with the development of Acute Lung Injury: Use of high VT Acidemia, Transfusion of blood products Restrictive lung disease.

OR for ALI development: 1.3 for each ml VT above 6 ml/kg PBW.

The NEW ENGLAND JOURNAL of MEDICINE

Ventilator-Induced Lung Injury


Arthur S. Slutsky, M.D., and V. Marco Ranieri, M.D.

VILI Physiopathology

High VT Barotrauma Alveolar rupture Volutrauma Overdistention

Repetitive Opening-closing Atelectrauma

Mechanical injury: activation proinflammatory cytokine cascade Biotrauma

The NEW ENGLAND JOURNAL of MEDICINE

Ventilator-Induced Lung Injury

Arthur S. Slutsky, M.D., and V. Marco Ranieri, M.D.

Lung protection

Low VT Barotrauma Alveolar rupture Volutrauma Overdistention

PEEP Atelectrauma

Avoid Mechanical injury: activation proinflammatory cytokine cascade Biotrauma

Mechanical ventilation induces lung injury

Lung protective ventilation strategy ARDS

Ventilation with lower VT vs traditional VT in adults for ALI/ARDS

5 Randomized trials: 1297 patients

Review: Lung protective ventilation strategy for the acute respiratory distress syndrome Comparison: 1 Protective versus conventional Outcome: 1 Mortality at the end of the follow up period for each trial

Outcome: 1 Mortality at th Study or subgroup	Protective n/N	Conventional n/N	Risk Ratio M - H, Fixed, 95% CI	Weight	Risk Ratio M - H, Fixed, 95% CI	Paw: 31-37 cmH ₂ O
Amato 1998	13/29		-	6.7 %	0.63 [0.39, 1.02]	Mortality at day 28: 40%
Brochard 1998	27/58	22/58		7.9 %	1.23 [0.80, 1.89]	
Stewart 1998	30/60	28/60	-	10.1 %	1.07 [0.74, 1.55]	Low VT (LPV)
Brower 1999	13/26	12/26		4.3 %	1.08 [0.62, 1.91]	\leq 7 ml/kg: 5.2 ml/kg
ARDS Network 2000	133/432	170/429		61.5 %	0.78 [0.65, 0.93]	Dolor
Villar 2006	17/50	25/45		9.5 %	0.61 [0.38, 0.98]	Paw: 22-30 cmH ₂ O
Total (95% Cl) Total events: 233 (Protectiv Heterogeneity: Chi ² = 9.24 Test for overall effect: Z = 3	, df = 5 (P = 0.10); F		•	100.0 %	0.83 [0.72, 0.95]	Mortality at day 28: 30%
Test for subaroun differen						RR: 0.83
	Favours	0.1 0 treatment	.2 0.5 1 2 Favou	5 10 rs control		

Low VT is associated with a 17% lower risk of mortality at 28 days

Cochrane Database of Systematic Reviews 2013/2017

High VT (control)

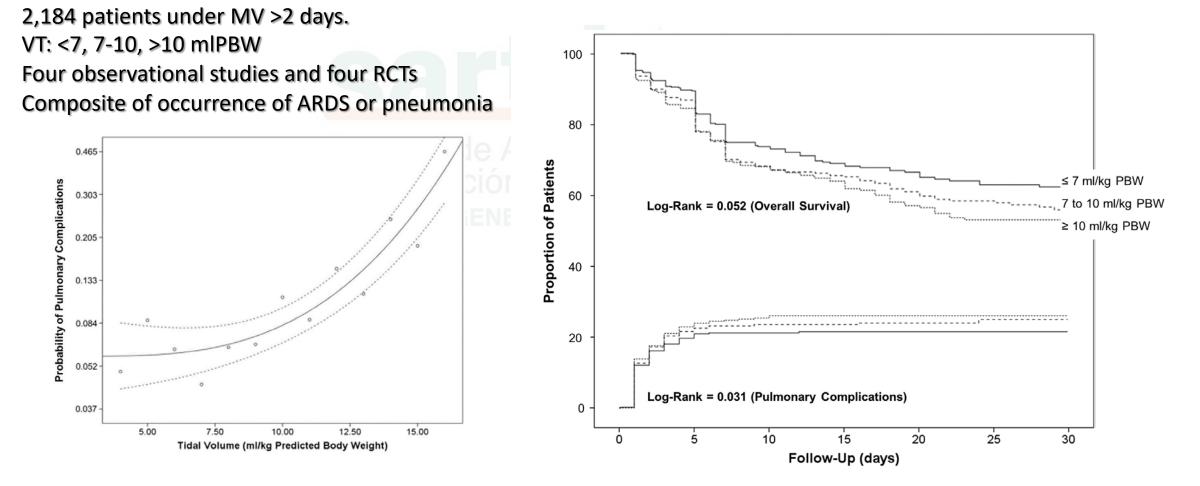
10-15 ml/Kg: 9.5 ml/kg

Association Between Use of Lung-Protective Ventilation With Lower Tidal Volumes and Clinical Outcomes Among Patients Without Acute Respiratory Distress Syndrome A Meta-analysis

Serpa-Neto A et al. JAMA. 2012;308(16):1651-1659

JAMA

20 Articles: 2822 study participants VT 6 m/IBW vs 10 ml/IBW


	High V	T, No.	Low V	, No.			
	Events	Total	Events	Total	Weight, %	RR (95% CI)	Favors Low V _T Favors High V _T
Mortality							
Michelet et al, ²⁰ 2006	1	26	2	26 23	1.0	2.08 (0.18-24.51)	
Wolthuis et al, ²² 2007	2	26 13		23	2.5	0.82 (0.12-5.71)	
Yilmaz et al, ²³ 2007	69	212	3 27	163	55.7	0.41 (0.25-0.68)	
Licker et al, ²⁶ 2009	15	533	13	558	16.7	0.82 (0.39-1.75)	
Determann et al,27 2010	23	74	24	76	17.7	1.02 (0.51-2.04)	
Fernandez-Bustamante et al,29 2011	1	75	3	154	1.5	1.47 (0.15-14.38)	
Sundar et al, ³⁰ 2011	2	74	1	75	2.2	0.49 (0.04-5.48)	· · · · · · · · · · · · · · · · · · ·
Yang et al, ³¹ 2011	1	50	0	50	1.7	0.33 (0.01-8.21)	
Weingarten et al,32 2012	1	20	1	20	1.1	1.00 (0.06-17.18)	2
Subtotal (95% CI)		1077		1145	100.0	0.64 (0.46-0.86)	\diamond
Total events	115		74				
Heterogeneity: χ_8^2 =6.94; P=.54, I ² =0% Test for overall effect: z=2.68; P=.007							0.01 0.1 1.0 10 100 RR (95% Cl)

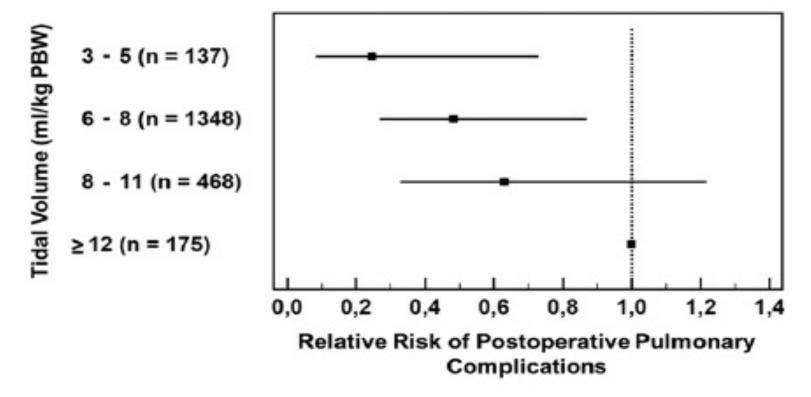
Lung-Protective Ventilation With Low Tidal Volumes and the Occurrence of Pulmonary Complications in Patients Without Acute Respiratory Distress Syndrome: A Systematic Review and Individual Patient Data Analysis*

Ary Serpa Neto, MD, MSc, PhD^{1,2,3}; Fabienne D. Simonis, MD¹; Carmen S. V. Barbas, MD, PhD³;

Crit Care Med 2015; 43:2155–2163

Protective versus Conventional Ventilation for Surgery

A Systematic Review and Individual Patient Data Meta-analysis

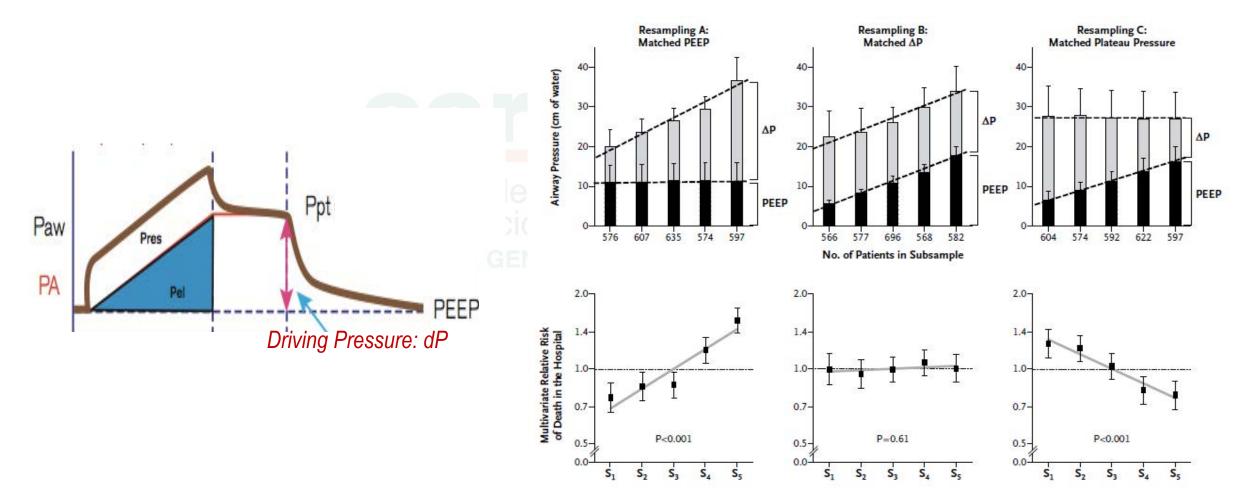

Ary Serpa Neto, M.D., M.Sc., Ph.D., Sabrine N. T. Hemmes, M.D., Carmen S. V. Barbas, M.D., Ph.D., Paolo Pelosi, M.D., F.E.R.S., Marcus J. Schultz, M.D., Ph.D.; for the PROVE Network Investigators

15 RCT Abdominal and thoracic surgeries 2127 patients

ANESTHESIOLOGY

Anesthesiology 2015; 123:66-78

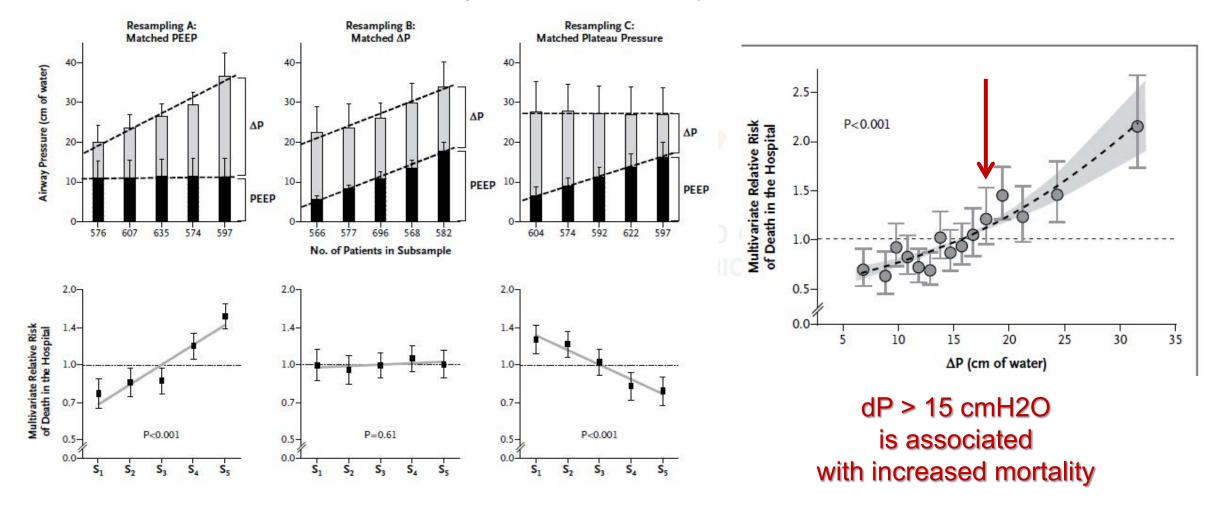
Hemodynamic Effects of Infusions of the Emulsion Formulation of Propofol during Nitrous Oxide Anesthesia in Humans


David P. Coates, MBBS, FFARCS, Christopher R. Monk, MBBS, FFARCS, Cedric Prys-Roberts, DM, PhD, FFARCS, FFARACS, and Mark Turtle, MBBS, FFARCS

The ventilator was adjusted to deliver a tidal volume 12–15 ml/kg at a frequency of 12 breaths per minute.

SPECIAL ARTICLE

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome Amato, N Engl J Med 2015; 372:747-755

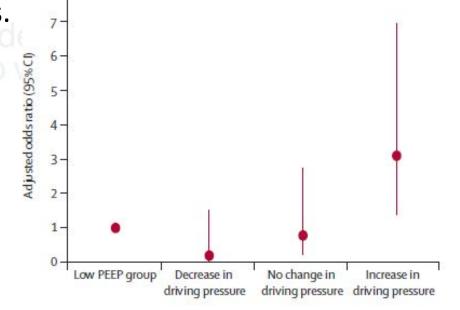

9 RCTs individual data from 3562 ARDS patients: dP as independent variable associated with survival

SPECIAL ARTICLE

Driving Pressure and Survival in the Acute Respiratory Distress Syndrome Amato, N Engl J Med 2015; 372:747-755

9 RCTs individual data from 3562 ARDS patients: dP as independent variable associated with survival

Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data


Ary Serpa Neto, Sabrine N T Hemmes, Carmen S V Barbas, Martin Beiderlinden, Ana Fernandez-Bustamante, Emmanuel Futier, Ognjen Gajic, Mohamed R El-Tahan, Abdulmohsin A Al Ghamdi, Ersin Günay, Samir Jaber, Serdar Kokulu, Alf Kozian, Marc Licker, Wen-Qian Lin, Andrew D Maslow, Stavros G Memtsoudis, Dinis Reis Miranda, Pierre Moine, Thomas Ng, Domenico Paparella, V Marco Ranieri, Federica Scavonetto, Thomas Schilling, Gabriele Selmo, Paolo Severgnini, Juraj Sprung, Sugantha Sundar, Daniel Talmor, Tanja Treschan, Carmen Unzueta, Toby N Weingarten, Esther K Wolthuis, Hermann Wrigge, Marcelo B P Amato, Eduardo L V Costa, Marcelo Gama de Abreu, Paolo Pelosi, Marcus J Schultz, for the PROVE Network Investigators

17 randomised controlled trials, including 2250 patients.

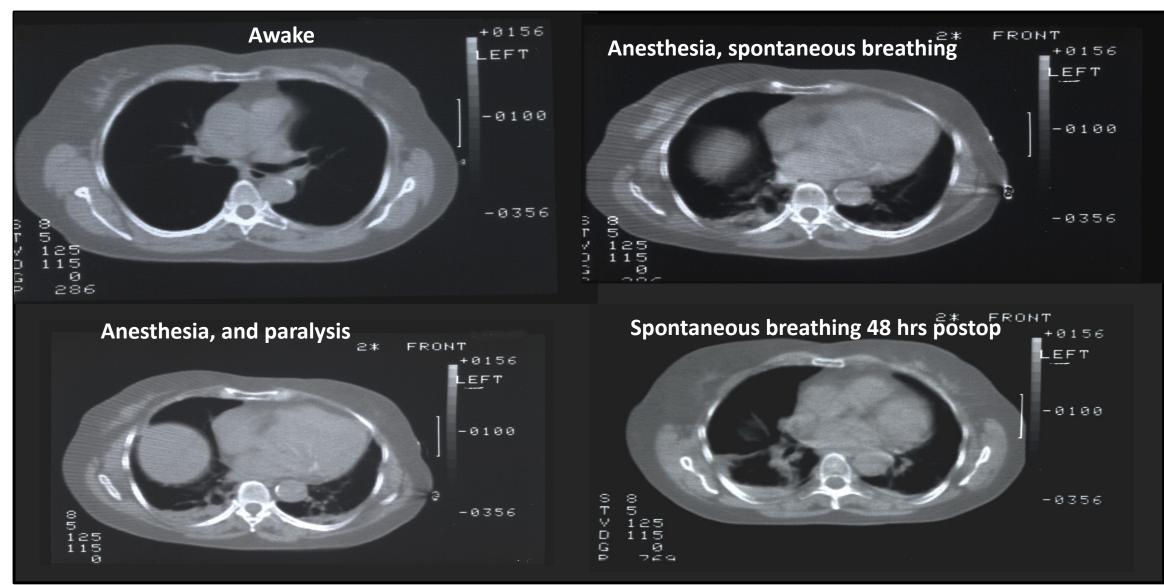
	Overall (n=2250)		Protective vs conventional* (n=834)		
	Odds ratio (95% Cl)	p value	Odds ratio (95% CI)	p value	
Ventilatory parameters					
Tidal volume (mL/kg PBW)	1.05 (0.98-1.13)	0.179	1.21 (1.06-1.38)	0.005	
PEEP (cm H,O)			0.78 (0.73-0.83)	<0.001	
Respiratory rate (movements per min)			1.11 (0.75-1.65)	0.601	
Driving pressure (cm H,O)	1.16 (1.13-1.19)	<0-0001	1.31 (1.19-1.45)	<0.001	
Plateau pressure (cm H,O)			1.29 (1.19-1.40)	<0.001	
FiO, (%)	13·17 (0·43-404·52)	0-140			

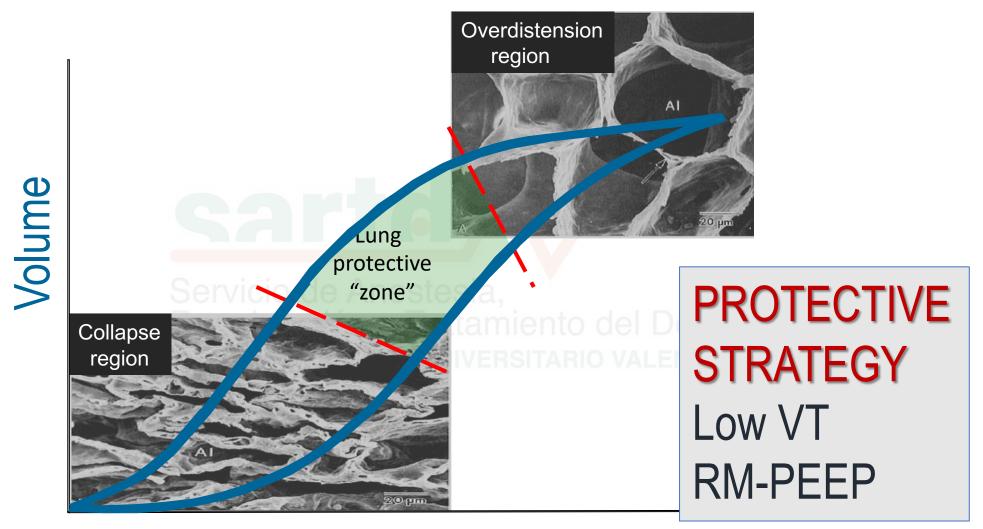
THE LANCET Respiratory Medicine

Lancet Respir Med 2016

8

Response of driving pressure


Protective strategy components

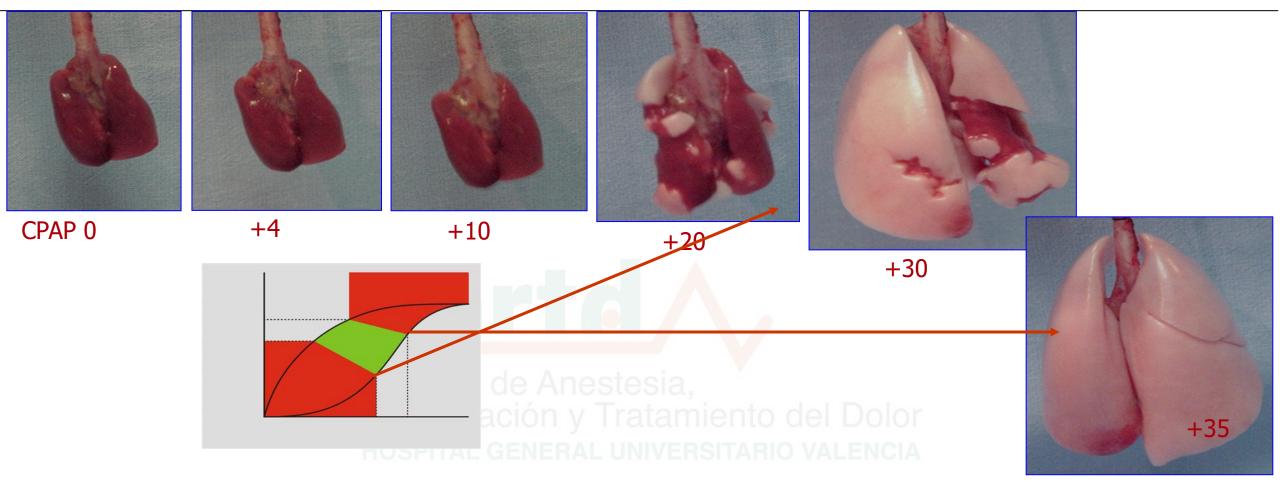

The effects of anesthesia and muscle paralysis on the respiratory system

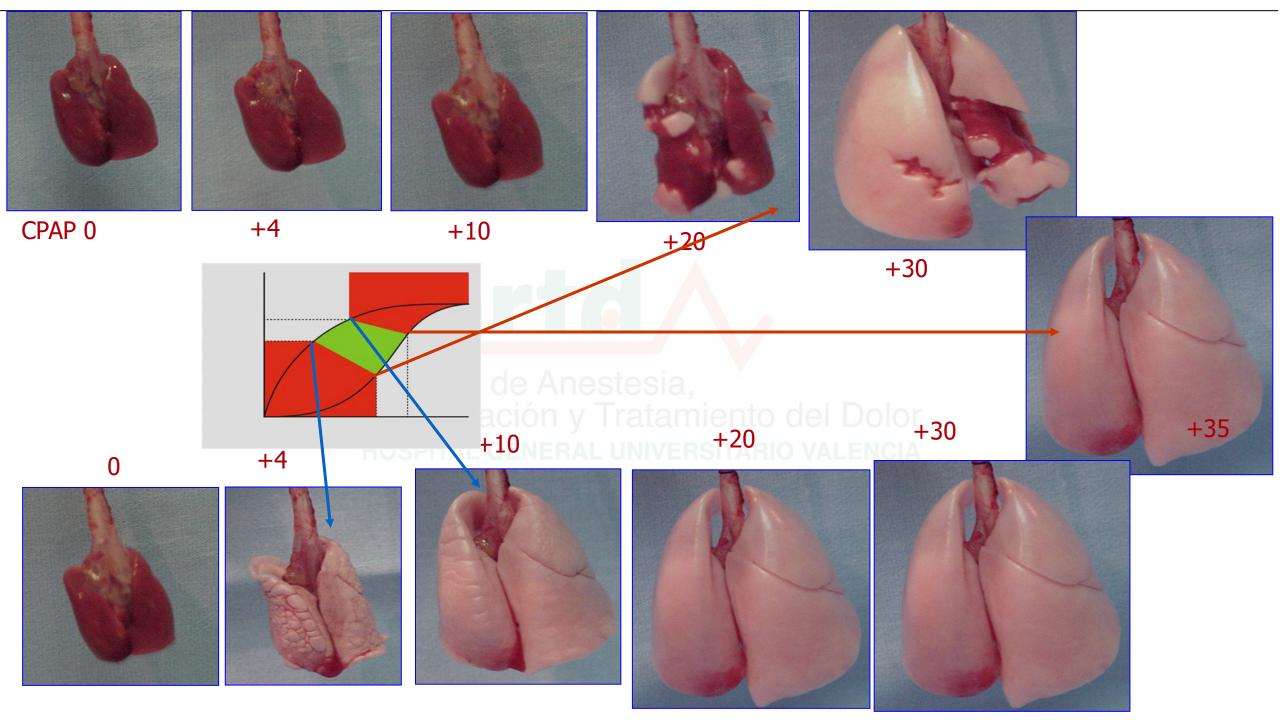
Göran Hedenstierna Lennart Edmark

Intensive Care Med (2005) 31:1327–1335

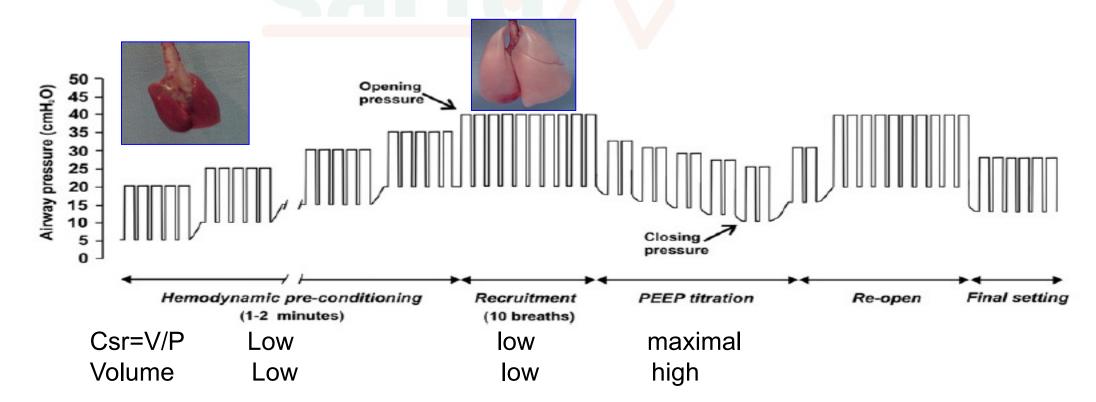
Strandberg A, Hedenstierna G, Tokics L, Lundquist H, Brismar B. Densities in dependent lung regions during anaesthesia: atelectasis or fluid accumulation? Acta Anaesthesiol Scand 1986;30:256-9.

Pressure


Open Lung Approach


Ventilatory strategy aimed at re-expanding previously collapsed lung tissue by means of a brief and controlled increase in transpulmonary pressure...

...and maintain lung re-expansion by the minimum level of PEEP that avoids end-expiratory lung collapse.

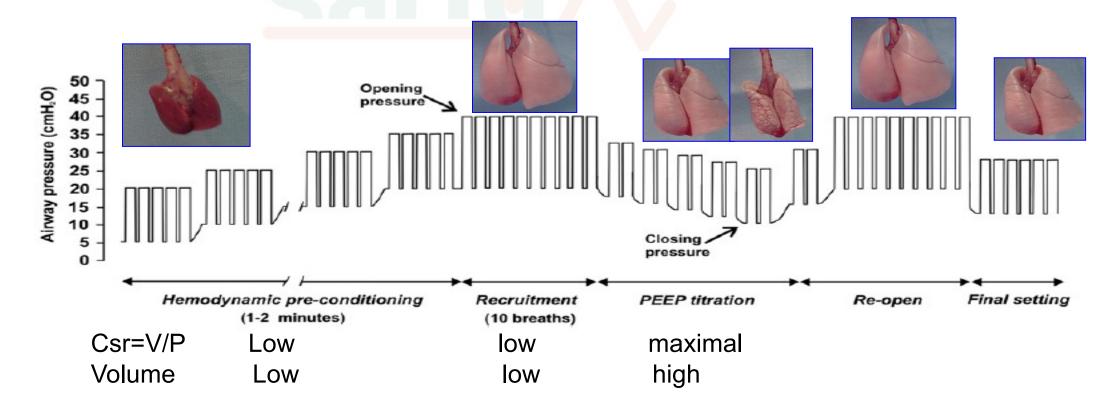


OLA Protocol: RM + PEEP titration

G. Tusman, J.F. Belda / Current Anaesthesia & Critical Care 21 (2010) 244–249

Protocol

PCV (10-15 cmH2O in normal lungs) for VT \leq 8ml/kg + PEEP increments in steps of 5 cmH2O, from 5 to 20.

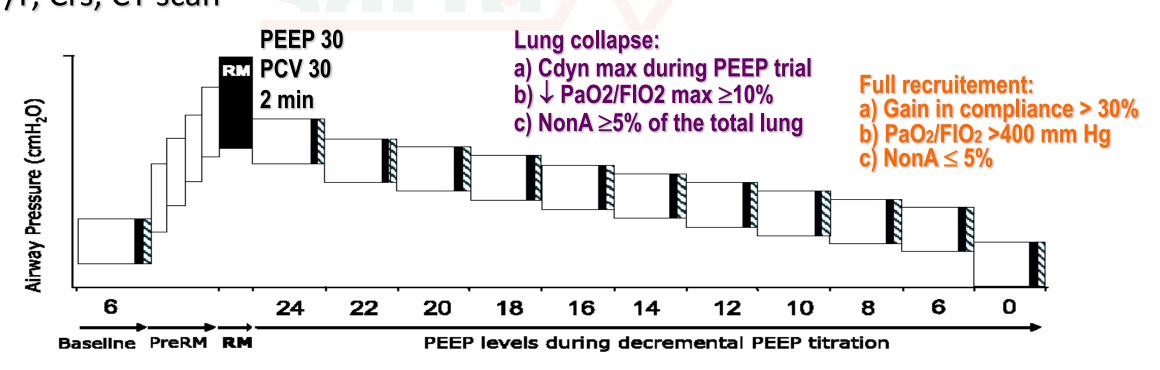


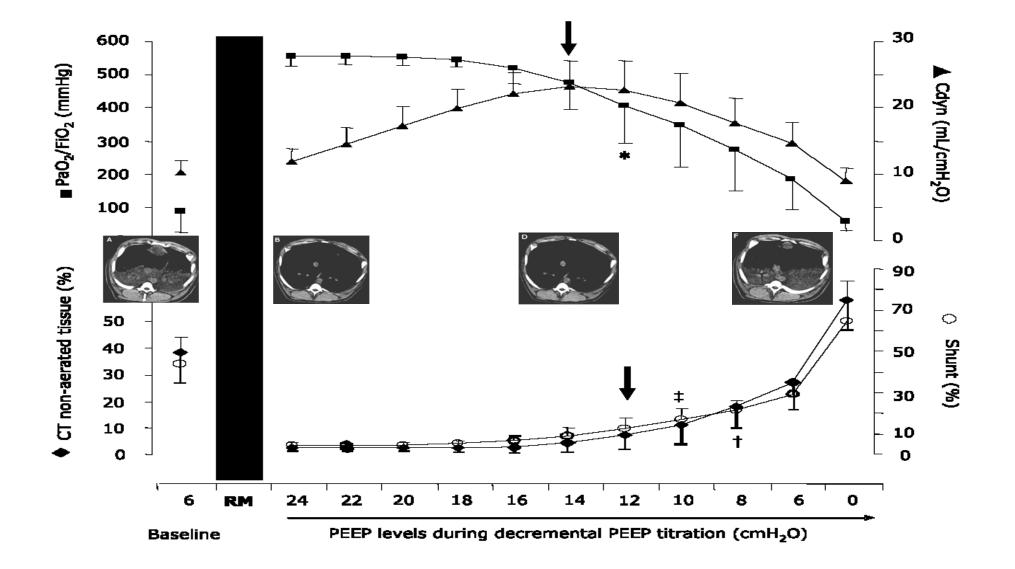
OLA Protocol: RM + PEEP titration

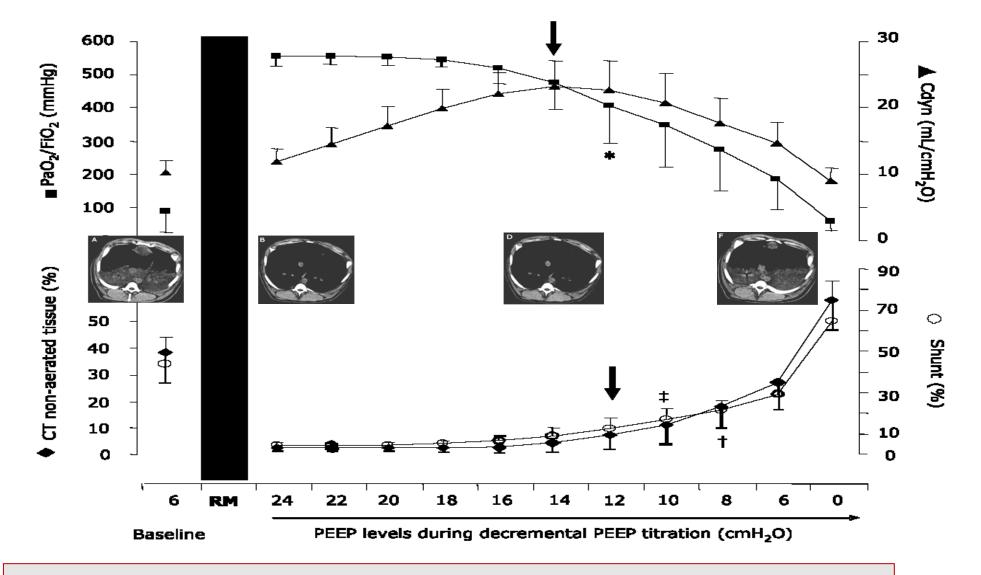
G. Tusman, J.F. Belda / Current Anaesthesia & Critical Care 21 (2010) 244–249

Protocol

PCV (10-15 cmH2O in normal lungs) for VT \leq 8ml/kg + PEEP increments in steps of 5 cmH2O, from 5 to 20.



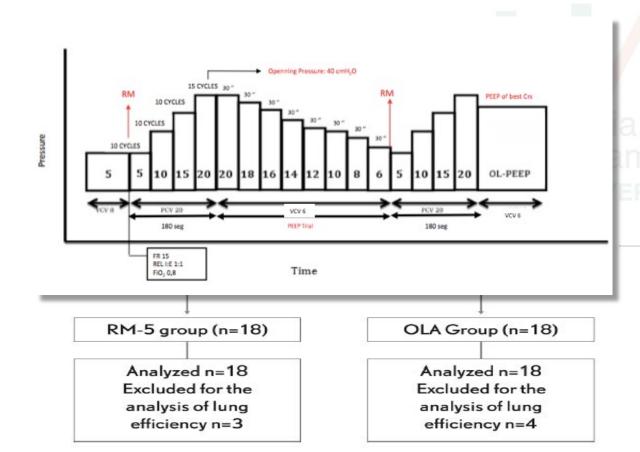

Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study <u>Critical Care Medicine</u>


Fernando Suarez-Sipmann, MD; Stephan H. Böhm, MD; Gerardo Tusman, MD; Tanja Pesch; Oliver Thamm; Hajo Reissmann, MD; Andreas Reske, MD; Anders Magnusson, MD, PhD; Göran Hedenstierna, MD, PhD

Crit Care Med 2007; 35:214–221

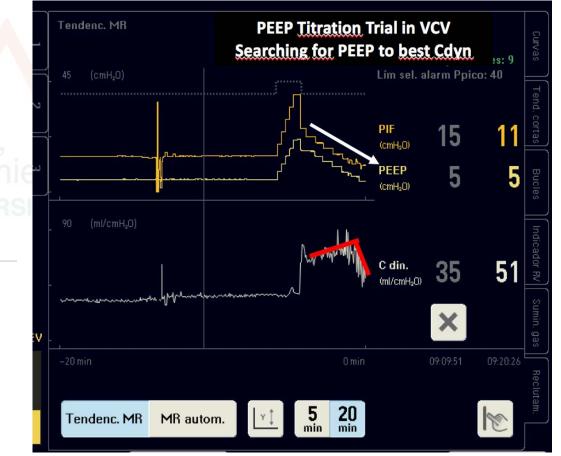
8 pigs with ARDS (lung lavage): RM+ decremental PEEP trial P/F, Crs, CT-scan

Conclusions:


Cdyn identified the beginning of collapse after recruitment. This is confirmed by oxygenation and CT-scans.

RESEARCH ARTICLE

Marina Soro¹, Francisco J. Belda¹


Open lung approach versus standard protective strategies: Effects on driving pressure and ventilatory efficiency during anesthesia - A pilot, randomized controlled trial

Carlos Ferrando^{1®}*, Fernando Suarez-Sipmann^{2,3®}, Gerardo Tusman^{4®}, Irene León^{1®}, Esther Romero^{1®}, Estefania Gracia^{1®}, Ana Mugarra^{1®}, Blanca Arocas^{1®}, Natividad Pozo^{5®},

PLoS One 2017; 11;12(5):e177399

Variables		PreOLA	Pre RM-5	Pre RM-5 vs. Pre OLA p value	OLA	RM-5	RM-5 vs. OLA p value
Ventilatory parameters n = 36	VT (ml)	347±38	361±43	0.491	350 ± 36	361±42	0.491
	PEEP, cmH₂O	5,0±0,0	5,0±0,0	1.00	8,0±2,3	5,0±0,0	<0.001
	RR, bpm	14 ± 2	14 ± 1	0.667	14±2	14±1	0.667
Respiratory system mechanics n = 36	DP (cmH₂O)	7.7 ± 1.0	7.7±1.3	1.00	5.6±1.0	7.4 ± 1.0	<0.001
	Pplat (cmH ₂ O)	13.3 ±1.2	14.6 ± 1.2	<0.001	13.7 ± 1.9	12.2±0.8	0.131
	Cdyn (ml⋅cmH ₂ O)	53 ± 13	59±19	0.945	68±25	61 ± 19	0.903
	Raw (cmH ₂ O·I·s)	11 ± 4	12 ± 4	0.314	11 ± 4	11±3	0.272
Ventilatory efficiency	VDBohr	0.58 ± 0.11	0.59 ± 0.08	0.224	0.56±0.11	0.56 ± 0.09	0.241
n = 29	VDaw/VT	0.36 ± 0.12	0.33 ± 0.06	0.314	0.32 ±0.11	0.31 ± 0.06	0.771
	VDalv/VTalv	0.35 ± 0.16	0.38±0.11	0.050	0.33±0.15	0.37 ±0.10	0.035

Table 2. Ventilatory parameters, respiratory system mechanics and ventilatory efficiency variables.

When compared to pre-RM

OLA resulted in a 22% increase in Compliance and a 28% decrease in Driving pressure

Anesthesiology 1999; 91:1221-31 © 1999 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Positive End-expiratory Pressure Improves Respiratory Function in Obese but not in Normal Subjects during Anestbesia and Paralysis

Paolo Pelosi, M.D.,* Irene Ravagnan, M.D.,† Gabriella Giurati, M.D.,† Mauro Panigada, M.D.,‡ Nicola Bottino, M.D.,‡ Stefano Tredici, M.D.,‡ Giuditta Eccher, M.D.,‡ Luciano Gattinoni, M.D.§

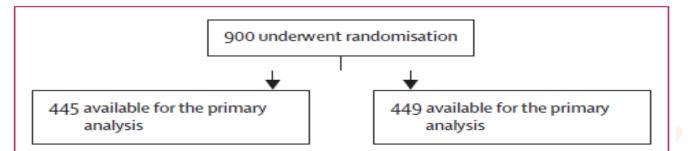
9 (66 Kg) vs 9 (149 Kg)

VCV Siemens 900C: VT 683±43 and RR:13.8±0.7 bpm Table 5. Gas Exchange at Different PEEP Levels

	0 cr	m H₂O	10 cm H ₂ O		
	Normal	Obese	Normai	Obese	
V _e (l/min)	9.41 ± 0.77	9.54 ± 0.53	9.41 ± 0.56	9.16 ± 0.68	
FI _{O2} (%)	50 ± 0	50 ± 0	50 ± 0	50 ± 0	
Pao, (mmHg)	218.1 ± 47.0	110.2 ± 29.6**	215.3 ± 47.3	130.0 ± 28.0**‡	
$\Delta_{(A-a)}O_2$ (mmHg)	110.0 ± 45.6	208.5 ± 30.5**	113.3 ± 86.8	187.3 ± 30.2**‡	
Pa _{co} , (mmHg)	28.4 ± 3.1	37.8 ± 6.8**	27.8 ± 5.7	39.4 ± 4.9**	
рНа	7.45 ± 0.07	7.38 ± 0.06	7.46 ± 0.09	7.38 ± 0.05*	
V _D /V _T (%)	28.7 ± 6.6	47.7 ± 22.2*	27.4 ± 4.5	49.0 ± 15.0**	

'Alveolar recruitment strategy' improves arterial oxygenation during general anaesthesia

G. Tusman^{1*}, S. H. Böhm, G. F. Vazquez de Anda², J. L. do Campo³ and B. Lachmann^{2*}

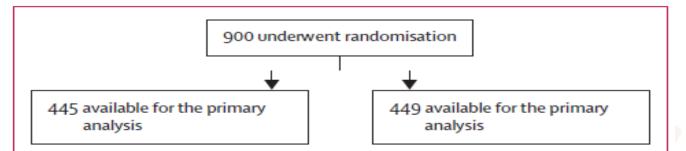

Br J Anaesth. 1999;82:8-13

3 groups of 10 patients: VT 7-9 ml/kg, RF: 10-12 pm ZEEP - PEEP 5 cmH2O - RM 40 cmH2O + PEEP 5

Variable	Time	ZEEP	PEEP	Recruitment
Pao, (kPa)	Basal	18.7 (12.8-26.3)	13.0 (10.2-20.6)	20.4 (10.4-25.3)
24 12 13	40 min	18.5 (15.0-29.1)	16.2 (12.2-21.4)*	24.4 (13.3-35.2)*
	80 min	18.9 (14.6-27.6)	19.3 (10.5-23.9)	25.5 (18.0-31.1)
	120 min	17.1 (14.9-26.2)	20.3 (11.4-24.5)	25.4 (18.0-36.8)
Compliance	Basal	46.5 (34-76)	47.0 (35-68)	47.5 (28-55)
1. S. S. S.	40 min	44.5 (26-70)	48.0 (37-66)	50.5 (29-74)*
	80 min	44.0 (33-64)	47.0 (31-67)	57.0 (38-75)
	120 min	43.0 (34-72)	45.5 (36-68)	62.0 (29-68)

High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial

The PROVE Network Investigators* for the Clinical Trial Network of the European Society of Anaesthesiology


THE LANCET Lancet 2014;384:495-503

ratural environment. Yet the future for human health depends on the survival of that very same environment. Here is the paradios

	Higher PEEP group (n=445)	Lower PEEP group (n=449)	р
Tidal volumes (mL)	500 (450-560)	500 (450–550)	
PBW (mL/kg)	7-2 (1-5)	7.1 (1.2)	
After 1 h	7.11 (1.32)	7.09 (1.23)	
Directly before extubation	6-96 (1-50)	7.07 (1.23)	
PEEP (cm H ₂ O)	12 (12-12)	2 (0-2)	
After 1 h	12 (12-12)	2 (0-2)	
Directly before extubation	12 (12-12)	2 (0-2)	

High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial

The PROVE Network Investigators* for the Clinical Trial Network of the European Society of Anaesthesiology

HE LANCET Lancet 2014;384:495-503

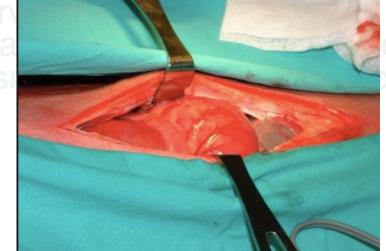
environment. Here is the paradox

.....

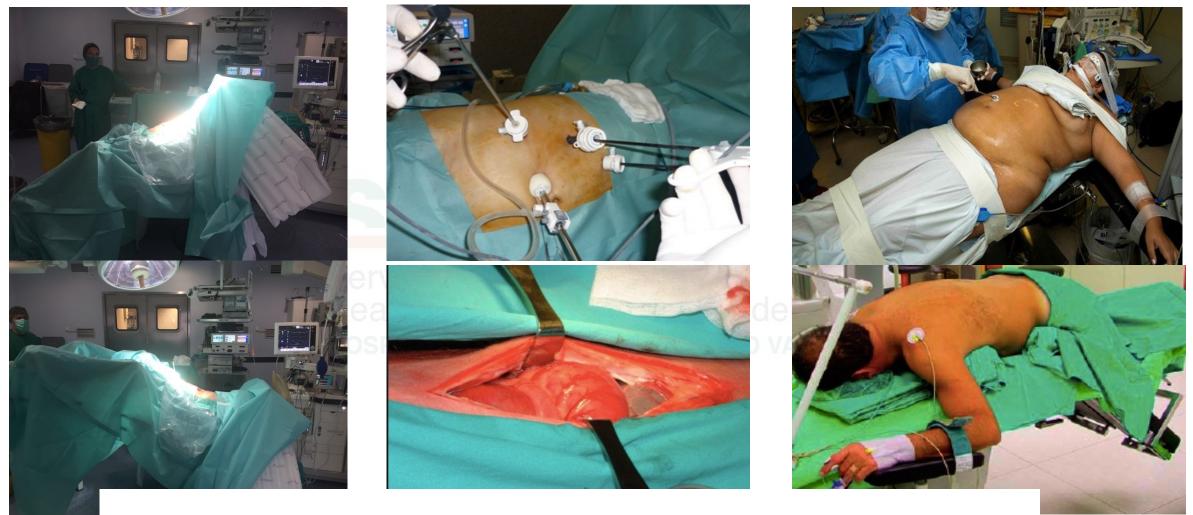
	Higher PEEP group (n=445)	Lower PEEP group (n=449)	р
Tidal volumes (mL)	500 (450-560)	500 (450-550)	
PBW (mL/kg)	7-2 (1-5)	7.1 (1.2)	
After 1 h	7.11 (1.32)	7.09 (1.23)	
Directly before extubation	6.96 (1.50)	7.07 (1.23)	
PEEP (cm H ₂ O)	12 (12-12)	2 (0-2)	

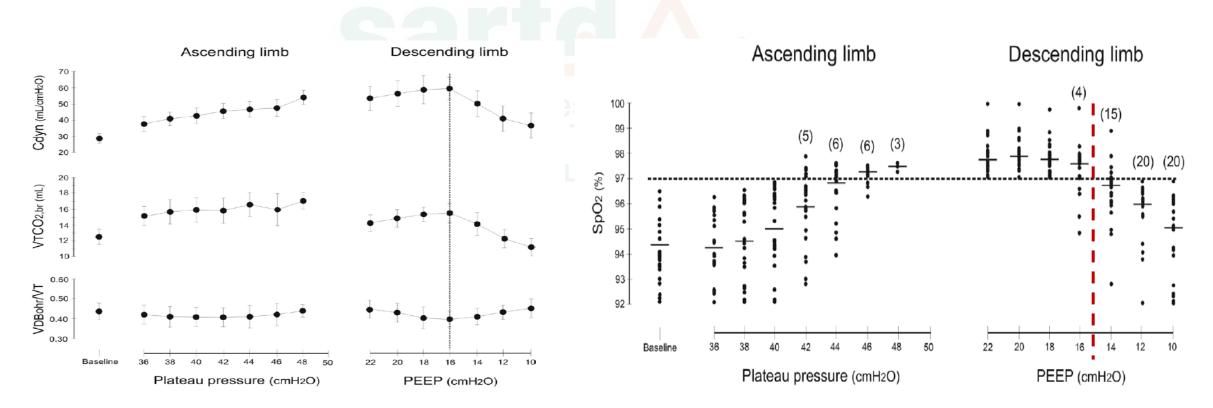
A1 Di

In the higher PEEP group, recruitment manoeuvres consisted of incremental increases in tidal volume directly after induction of anaesthesia, after any disconnection from the ventilator, and just before tracheal extubation


PROVHILO TRIAL. PROVE network investigators. Lancet 2014

	Higher PEEP group (n=445)	Lower PEEP group (n=449)	Relative risk (95% CI)	р
Postoperative pulmonary complicati				
Total*	174/437 (40%)	172/443 (39%)	1.01 (0.85-1.20)	0.84
Total (excluding hypoxaemia)	142/437 (32%)	149/443 (34%)	0.96 (0.78-1.17)	0.66
Hypoxaemia	105/437 (24%)	95/443 (21%)	1.08 (0.92-1.25)	0.36
Severe hypoxaemia	29/437 (7%)	34/443 (8%)	0.92 (0.70-1.21)	0.55
Bronchospasm	18/437 (4%)	18/443 (4%)	1.01 (0.72-1.41)	0.97
Suspected pulmonary infection	68/437 (16%)	75/443 (17%)	0.95 (0.79-1.14)	0.58
Pulmonary infiltrate	35/437 (8%)	32/443 (7%)	1.06 (0.83-1.34)	0.66
Aspiration pneumonitis	1/437 (<1%)	4/443 (1%)	0.40 (0.07-2.32)	0.18
Acute respiratory distress syndrome	5/437 (1%)	8/443 (2%)	0.77 (0.39-1.54)	0.41
Atelectasis	53/437 (12%)	55/443 (12%)	0.99 (0.80-1.21)	0.90
Pleural effusion	90/437 (21%)	92/443 (21%)	0.99 (0.84-1.17)	0.95
Pulmonary oedema caused by cardiac failure	19/437 (4%)	20/443 (5%)	0.98 (0.71-1.36)	0.90
Pneumothorax	15/437 (3%)	12/443 (3%)	1.12 (0.80-1.58)	0.53



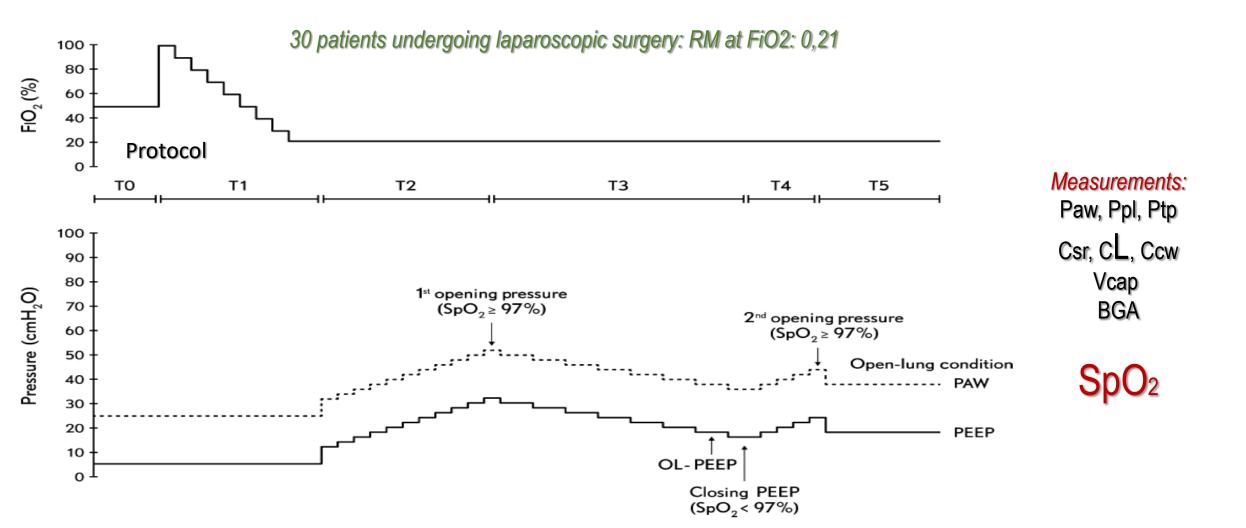

There is not a magic value!!!!

Noninvasive Monitoring of Lung Recruitment Maneuvers in Morbidly Obese Patients: The Role of Pulse Oximetry and Volumetric Capnography

Gerardo Tusman, MD,* Iván Groisman, MD,* Felipe E. Fiolo, MD, FACS,† Adriana Scandurra, PhD,‡ Jorge Martinez Arca,‡ Gustavo Krumrick, MD,* Stephan H. Bohm, MD,§ and Fernando Suarez Sipmann, MD, PhD||¶

Anesth Analg 2014;118:137–44

20 morbidly obese patients undergoing laparoscopic bariatric surgery



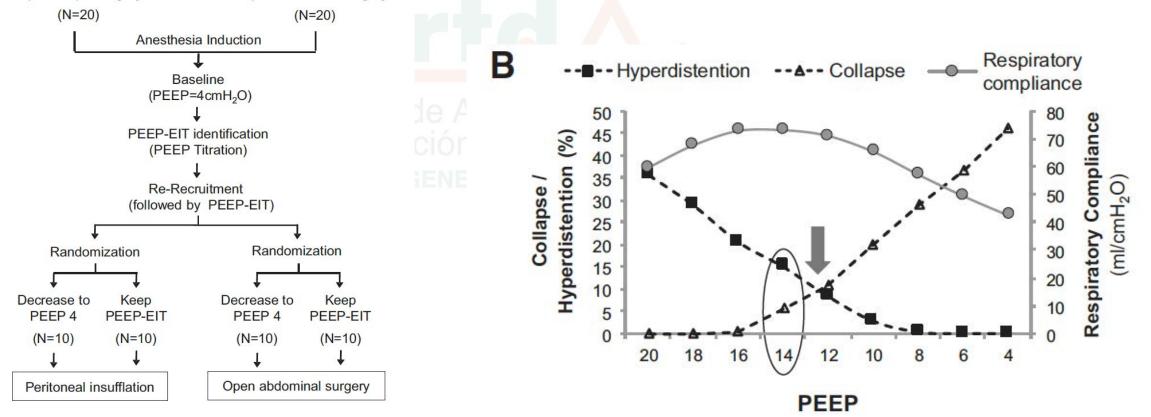
Individualized lung recruitment maneuver guided by pulse-oximetry in anesthetized patients undergoing laparoscopy: a feasibility study

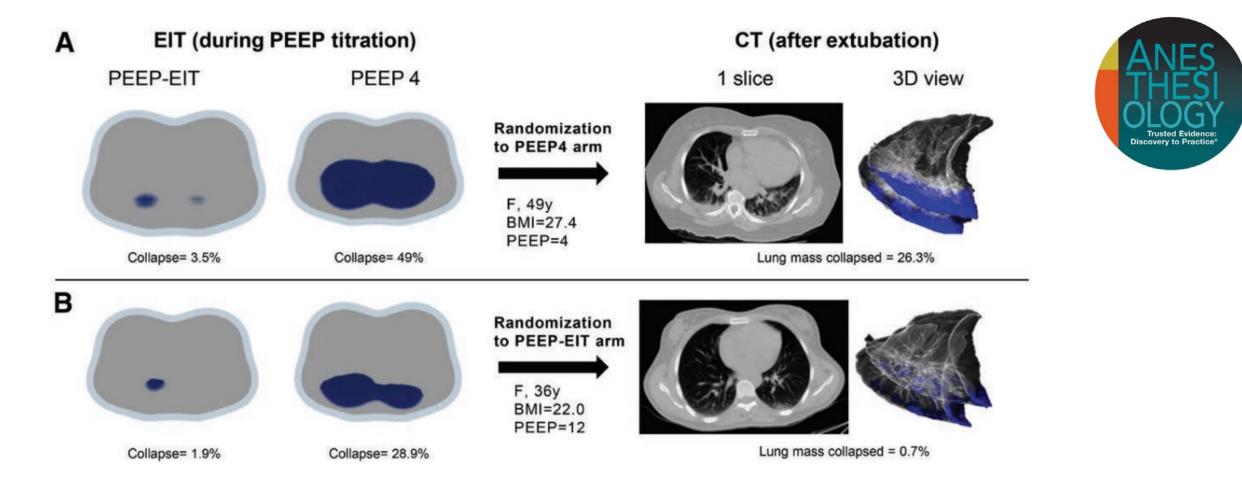
බඥ වේ Anaesthesiologica Scandinavica

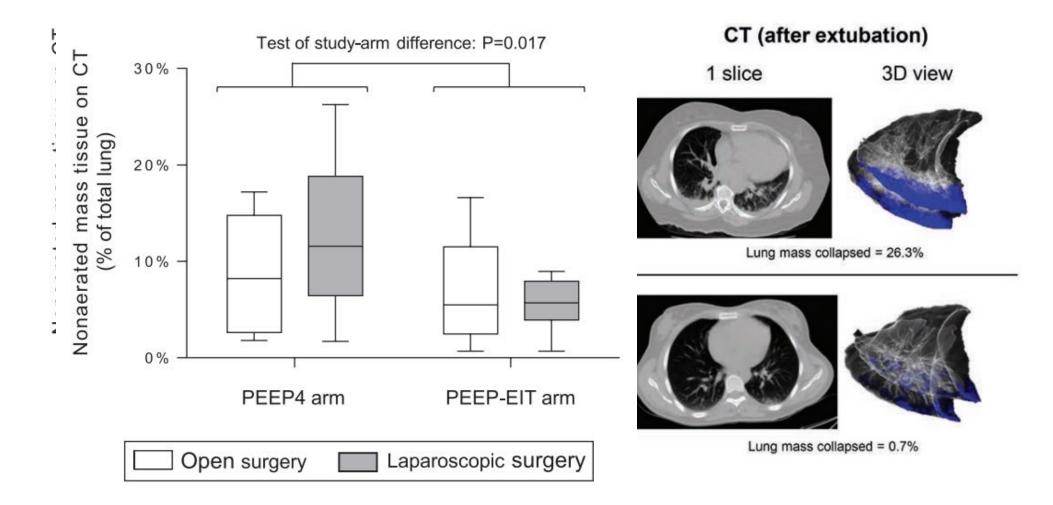
AAS 2018;62:608-619.

C. Ferrando^{1,2} (D), G. Tusman³, F. Suarez-Sipmann^{1,4} (D), I. León¹, N. Pozo¹, J. Carbonell¹, J. Puig¹, E. Pastor¹, E. Gracia¹, A. Gutiérrez¹, G. Aguilar¹, F. J. Belda¹ and M. Soro¹

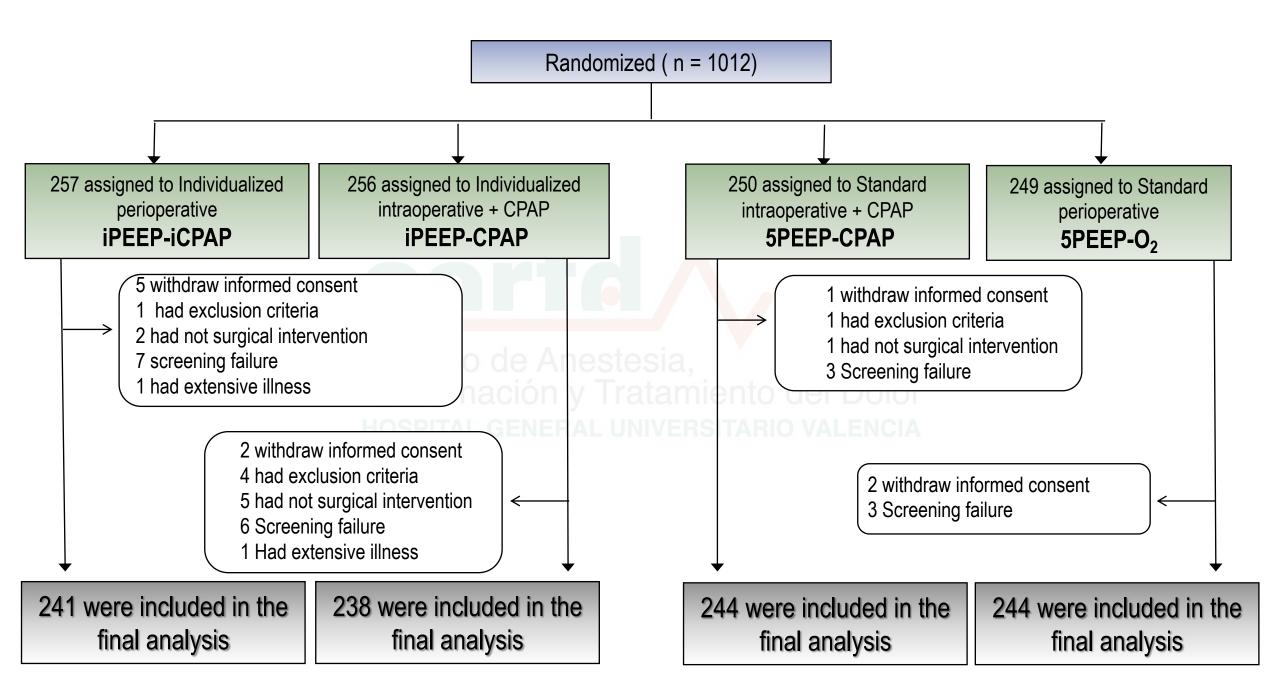
Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis


Sérgio M. Pereira, M.D., Mauro R. Tucci, M.D., Ph.D., Caio C. A. Morais, P.T., M.Sc., Claudia M. Simões, M.D., Ph.D., Bruno F. F. Tonelotto, M.D., Michel S. Pompeo, M.D., Fernando U. Kay, M.D., Ph.D., Paolo Pelosi, M.D., F.E.R.S., Joaquim E. Vieira, M.D., Ph.D., Marcelo B. P. Amato, M.D., Ph.D.


Open abdominal surgery

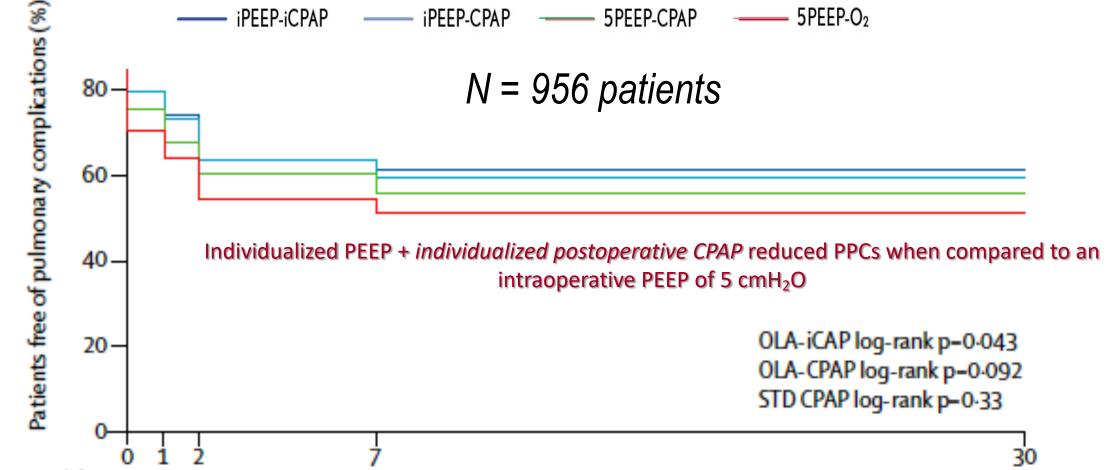

A Laparoscopic surgery

Anesthesiology 2018; 129:1070-81



STUDY PROTOCOL

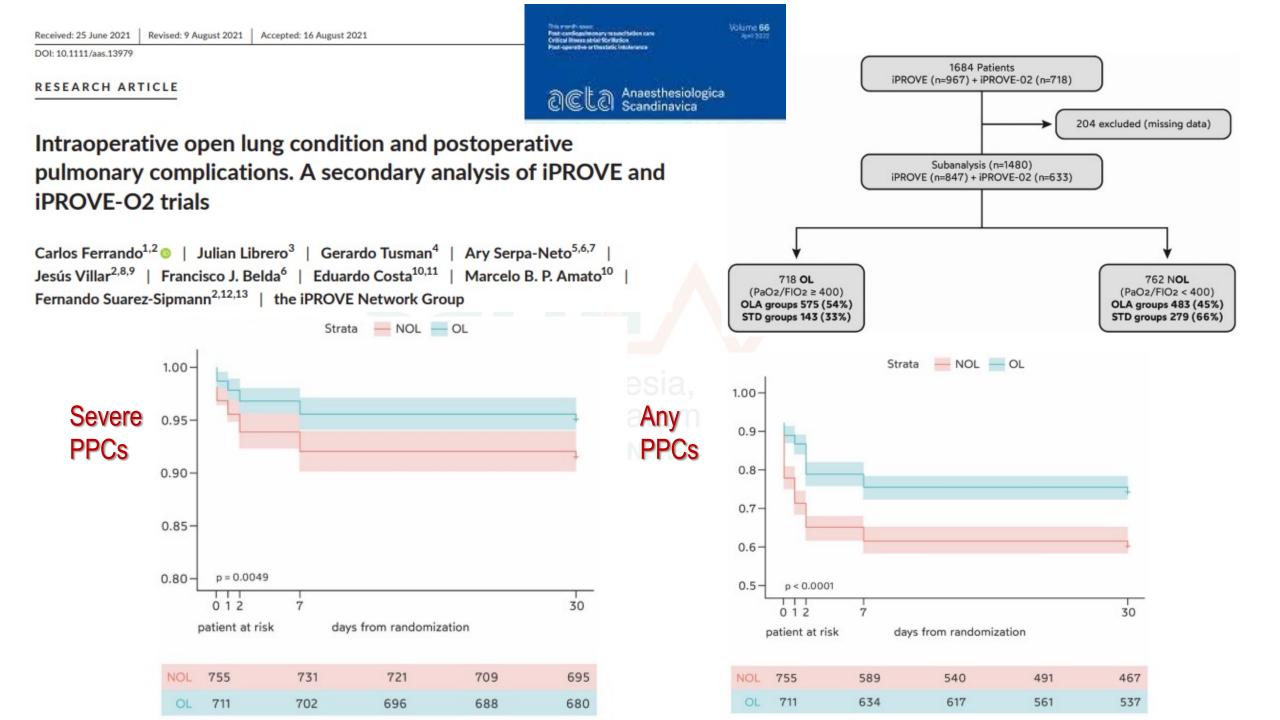
Open Access


Rationale and study design for an individualized perioperative open lung ventilatory strategy (iPROVE): study protocol for a randomized controlled trial

Carlos Ferrando^{1*}, Marina Soro¹, Jaume Canet², Ma Carmen Unzueta³, Fernando Suárez⁴, Julián Librero⁵, Salvador Peiró⁵, Alicia Llombart¹, Carlos Delgado¹, Irene León¹, Lucas Rovira⁶, Fernando Ramasco⁷, Manuel Granell⁸, César Aldecoa⁹, Oscar Diaz¹⁰, Jaume Balust¹¹, Ignacio Garutti¹², Manuel de la Matta¹³, Alberto Pensado¹⁴, Rafael Gonzalez¹⁵, Mª Eugenia Durán¹⁶, Lucia Gallego¹⁷, Santiago García del Valle¹⁸, Francisco J Redondo¹⁹, Pedro Diaz²⁰, David Pestaña²¹, Aurelio Rodríguez²², Javier Aguirre²³, Jose M García²⁴, Javier García²⁵, Elena Espinosa²⁶, Pedro Charco²⁷, Jose Navarro²⁸, Clara Rodríguez⁵, Gerardo Tusman²⁹, Francisco Javier Belda¹, on behalf of the IPROVE investigators (Appendices 1 and 2)

Individualised perioperative open-lung approach versus standard protective ventilation in abdominal surgery (iPROVE): a randomised controlled trial

Carlos Ferrando, Marina Soro, Carmen Unzueta, Fernando Suarez-Sipmann, Jaume Canet, Julián Librero, Natividad Pozo, Salvador Peiró, Jaume Puig, Gonzalo Azparren, Gerardo Tusman, Jesús Villar, Javier Belda, on behalf of the Individualized PeRioperative Open-Iung VEntilation (iPROVE) Network*

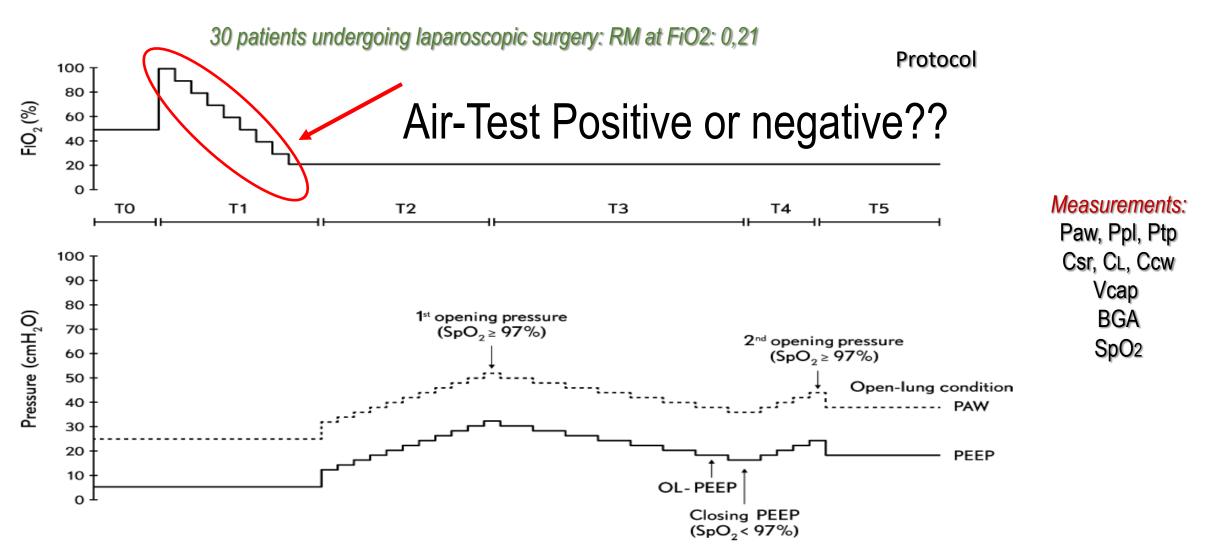

W

THE LANCET

Respiratory Medicine

2018;6:193-203

•• • • • •



Individualized lung recruitment maneuver guided by pulse-oximetry in anesthetized patients undergoing laparoscopy: a feasibility study

බඥ වේ Anaesthesiologica Scandinavica

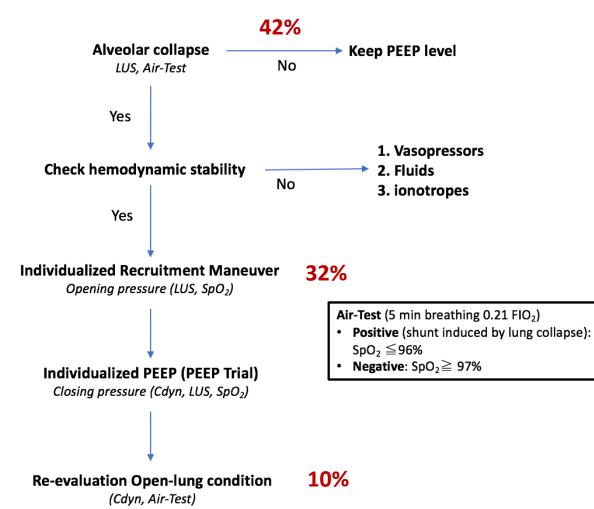
AAS 2018;62:608-619.

C. Ferrando^{1,2} (D), G. Tusman³, F. Suarez-Sipmann^{1,4} (D), I. León¹, N. Pozo¹, J. Carbonell¹, J. Puig¹, E. Pastor¹, E. Gracia¹, A. Gutiérrez¹, G. Aguilar¹, F. J. Belda¹ and M. Soro¹

Individualized lung recruitment maneuver guided by pulse-oximetry in anesthetized patients undergoing laparoscopy: a feasibility study

AAS 2018;62:608-619.

C. Ferrando^{1,2} (D), G. Tusman³, F. Suarez-Sipmann^{1,4} (D), I. León¹, N. Pozo¹, J. Carbonell¹, J. Puig¹, E. Pastor¹, E. Gracia¹, A. Gutiérrez¹, G. Aguilar¹, F. J. Belda¹ and M. Soro¹


Variables	Open-Lung without RM n=6	Open-Lung WITH RM n=20	P-Value	
SpO ₂	97	98	0.98	
PaO ₂ /FIO ₂	397	435	0.27	ito
Ptp _{EE}	1.6	1.2	0.66	AR
DP _{EE}	10.1	10.0	0.98	
Cdyn	23	35	0.09	
C _L dyn	56	53	0.41	
VDBöhr	0.38	0.33	0.36	

No differences in oxygention, lung efficiency and mechanics between those patients SpO₂ >96% (FIO₂ 0.21) vs those patients $SpO_2 < 96\%$ in whose an **OLA** was applied

New frontiers: art and innovation for intraoperative ventilatory management

Ferrando C, Belda FJ.

iPROVE algorithm

Minerva Anestesiol 2017; 83:1007-1009

Summary

We learned setting protective ventilation in OR:

To reduce postoperative complications

Lung protective ventilation: Individualized way: VT 6-8 ml/Kg IBW iPROVE algoritm: Air-test RM + PEEP at the best Compliance-Oxygenation During and after surgery Invasive and non invasive

